Skip to main content
Log in

Influence of MWCNTs geometry and surface oxidation on rheological and thermal properties of PEG nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The focus of this research was on the thermal conductivity and rheological properties of poly(ethylene glycol) with a molecular mass of 200 g mol−1 (i.e., PEG200) loaded with four different types of multi-walled carbon nanotubes (MWCNTs) in a wide concentration range up to 10 mass%. MWCNTs used differ in size (both diameter and length) and the content of COOH (oxidized) functional groups on their surface. It was found that the use of oxidized, shorter and wider MWCNTs in PEG200 results in highest enhancement in thermal conductivity by 133% for 10 mass% MWCNTs-PEG200 nanofluids. Investigation of the shear rate dependence of dynamic viscosity (η) showed that the use of MWCNTs in concentrations greater than 0.1 mass% changes the Newtonian behavior of PEG200 and results in the shear-thinning behavior. This behavior is strongly influenced by the MWCNT concentration in the nanofluid. When comparing the same nanofluid concentration, the highest degree of MWCNT agglomeration in PEG200 nanofluids was observed when long, thin and pristine MWCNTs were used. The thermal conductivity results were correlated with the most commonly used theoretical models: Maxwell, Hamilton-Crosser, Xue, and Murshed. Dynamic viscosity results were correlated with Einstein, Brinkman, and Brenner-Condiff theoretical models. The best agreement with the experimental results was obtained by the Maxwell and Einstein models, indicating the formation of sphere-like MWCNT agglomerates in each PEG200 nanofluid studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fan L, Khodadadi JM. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev. 2011. https://doi.org/10.1016/j.rser.2010.08.007.

    Article  Google Scholar 

  2. Languri EM, Cunningham G. Thermal energy storage systems. Lect Notes Comput Sci. 2019. https://doi.org/10.1007/978-3-030-05636-0_9.

    Article  Google Scholar 

  3. Mofijur M, et al. Phase change materials (PCM) for solar energy usages and storage: an overview. Energies. 2019. https://doi.org/10.3390/en12163167.

    Article  Google Scholar 

  4. Hall L. NASA to begin testing next generation of spacecraft heat echangers. 2016. https://www.nasa.gov/feature/nasa-to-begin-testing-next-generation-of-spacecraft-heat-exchangers. Accessed 10 Jan 2022.

  5. Rashidi S, Shamsabadi H, Esfahani A, Harmand S. A review on potentials of coupling PCM storage modules to heat pipes and heat pumps. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08930-1.

    Article  Google Scholar 

  6. Abokersh MH, Osman M, El-Baz O, El-Morsi M, Sharaf O. Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS). Int J Energy Res. 2017. https://doi.org/10.1002/er.3765.

    Article  Google Scholar 

  7. Thomson A, Claudio G. The technical and economic feasibility of utilising phase change materials for thermal storage in district heating networks. Energy Procedia. 2019. https://doi.org/10.1016/j.egypro.2018.12.042.

    Article  Google Scholar 

  8. Rakkappan SR, Sivan S, Ahmed SN, Naarendharan M, Sai SP. Preparation, characterisation and energy storage performance study on 1-decanol-expanded graphite composite PCM for air-conditioning cold storage system. Int J Refrig. 2021. https://doi.org/10.1016/j.ijrefrig.2020.11.004.

    Article  Google Scholar 

  9. Bland A, Khzouz M, Statheros T, Gkanas EI. PCMs for residential building applications: a short review focused on disadvantages and proposals for future development. Buildings. 2017. https://doi.org/10.3390/buildings7030078.

    Article  Google Scholar 

  10. Nurlybekova G, Memon SA, Adilkhanova I. Quantitative evaluation of the thermal and energy performance of the PCM integrated building in the subtropical climate zone for current and future climate scenario. Energy. 2021. https://doi.org/10.1016/j.energy.2020.119587.

    Article  Google Scholar 

  11. Frigione M, Lettieri M, Sarcinell A. Phase change materials for energy efficiency in buildings and their use in mortars. Mater (Basel). 2019. https://doi.org/10.3390/ma12081260.

    Article  Google Scholar 

  12. Alkan C, Gunther E, Hiebler S, Ensari OF, Kahraman D. Polyethylene glycol-sugar composites as shape stabilized phase change materials for thermal energy storage. Polym Compos. 2012. https://doi.org/10.1002/pc.22307.

    Article  Google Scholar 

  13. Qi G-Q, et al. Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide. Sol Energy Mater Sol Cells. 2014. https://doi.org/10.1016/j.solmat.2014.01.024.

    Article  Google Scholar 

  14. Sundararajan S, Samui AB, Kulkarni PS. Versatility of polyethylene glycol (PEG) in designing solid-solid phase change materials (PCMs) for thermal management and their application to innovative technologies. J Mater Chem A. 2017. https://doi.org/10.1039/C7TA04968D.

    Article  Google Scholar 

  15. Cabaleiro D, Hamze S, Fal J, Marcos A, Estellé P, Żyła G. Thermal and physical characterization of PEG phase change materials enhanced by carbon-based nanoparticles. Nanomaterials. 2020. https://doi.org/10.3390/nano10061168.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sharifi N, Bergman TL, Faghri A. Enhancement of PCM melting in enclosures with horizontally-finned internal surfaces. Int J Heat Mass Transf. 2011. https://doi.org/10.1016/j.ijheatmasstransfer.2011.05.027.

    Article  Google Scholar 

  17. Feng L, Zheng J, Yang H, Guo Y, Li W, Li X. Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials. Sol Energy Mater Sol Cells. 2011. https://doi.org/10.1016/j.solmat.2010.09.033.

    Article  Google Scholar 

  18. Sardari PT, Babaei-Mahani R, Giddings D, Yasseri S, Moghimi MA, Bahai H. Energy recovery from domestic radiators using a compact composite metal Foam/PCM latent heat storage. J Clean Prod. 2020. https://doi.org/10.1016/j.jclepro.2020.120504.

    Article  Google Scholar 

  19. Liang H, Niu J, Gan Y. Performance optimization for shell-and-tube PCM thermal energy storage. J Energy Storage. 2020. https://doi.org/10.1016/j.est.2020.101421.

    Article  Google Scholar 

  20. Li W, et al. Design, controlled fabrication and characterization of narrow-disperse macrocapsules containing Micro/NanoPCMs. Mater Des. 2016. https://doi.org/10.1016/j.matdes.2016.03.084.

    Article  Google Scholar 

  21. Wijesena RN, Tissera ND, Rathnayaka VWSG, Rajapakse HD, de Silva RM, de Silva MN. Shape-stabilization of polyethylene glycol phase change materials with chitin nanofibers for applications in ‘smart’ windows. Carbohydr Polym. 2020. https://doi.org/10.1016/j.carbpol.2020.116132.

    Article  PubMed  Google Scholar 

  22. Nitas M, Koronaki IP. Performance analysis of nanoparticles-enhanced PCM: an experimental approach. Therm Sci Eng Prog. 2021. https://doi.org/10.1016/j.tsep.2021.100963.

    Article  Google Scholar 

  23. Cabaleiro D, et al. Development of paraffinic phase change material nanoemulsions for thermal energy storage and transport in low-temperature applications. Appl Therm Eng. 2019. https://doi.org/10.1016/j.applthermaleng.2019.113868.

    Article  Google Scholar 

  24. Berber S, Kwon Y-K, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett. 2000. https://doi.org/10.1103/PhysRevLett.84.4613.

    Article  PubMed  Google Scholar 

  25. Xie H, Cai A, Wang X. Thermal diffusivity and conductivity of multiwalled carbon nanotube arrays. Phys Lett Sect A Gen At Solid State Phys. 2007. https://doi.org/10.1016/j.physleta.2007.02.079.

    Article  Google Scholar 

  26. Che J, Cagin T, Goddard WA III. Thermal conductivity of carbon nanotubes. Nanotechnology. 2000. https://doi.org/10.1088/0957-4484/11/2/305.

    Article  Google Scholar 

  27. Kim P, Shi L, Majumdar A, McEuen PL. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett. 2001. https://doi.org/10.1103/PhysRevLett.87.215502.

    Article  PubMed  Google Scholar 

  28. Aliev AE, Lima MH, Silverman EM, Baughman RH. Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes. Nanotechnology. 2010. https://doi.org/10.1088/0957-4484/21/3/035709.

    Article  PubMed  Google Scholar 

  29. Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci. 2011. https://doi.org/10.1016/j.progpolymsci.2010.11.004.

    Article  Google Scholar 

  30. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001. https://doi.org/10.1063/1.1408272.

    Article  Google Scholar 

  31. Xie H, Lee H, Youn W, Choi M. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J Appl Phys. 2003. https://doi.org/10.1063/1.1613374.

    Article  Google Scholar 

  32. Marcos MA, et al. MWCNT in PEG-400 nanofluids for thermal applications: a chemical, physical and thermal approach. J Mol Liq. 2019. https://doi.org/10.1016/j.molliq.2019.111616.

    Article  Google Scholar 

  33. Xue Q, Xu WM. A model of thermal conductivity of nanofluids with interfacial shells. Mater Chem Phys. 2005. https://doi.org/10.1016/j.matchemphys.2004.05.029.

    Article  Google Scholar 

  34. Temel UN, Kurtulus S, Parlak M, Yapici K. Size-dependent thermal properties of multi-walled carbon nanotubes embedded in phase change materials. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-6966-8.

    Article  Google Scholar 

  35. Ranjbar S, Masoumi H, Haghighi Khoshkhoo R, Mirfendereski M. Experimental investigation of stability and thermal conductivity of phase change materials containing pristine and functionalized multi-walled carbon nanotubes. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09005-x.

    Article  Google Scholar 

  36. Zeng JL, et al. Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM. J Therm Anal Calorim. 2009. https://doi.org/10.1007/s10973-008-9275-9.

    Article  Google Scholar 

  37. Soleimani H, et al. Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding. Results Phys. 2018. https://doi.org/10.1016/j.rinp.2018.01.072.

    Article  Google Scholar 

  38. Chen W, Zou C, Li X, Liang H. Application of recoverable carbon nanotube nanofluids in solar desalination system: an experimental investigation. Desalination. 2019. https://doi.org/10.1016/j.desal.2017.09.025.

    Article  Google Scholar 

  39. Yapici K, Cakmak NK, Ilhan N, Uludag Y. Rheological characterization of polyethylene glycol based TiO2 nanofluids. Korea Aust Rheol J. 2014. https://doi.org/10.1007/s13367-014-0041-1.

    Article  Google Scholar 

  40. Marcos MA, et al. Influence of molecular mass of PEG on rheological behaviour of MWCNT-based nanofluids for thermal energy storage. J Mol Liq. 2020. https://doi.org/10.1016/j.molliq.2020.113965.

    Article  Google Scholar 

  41. Omrani AN, Esmaeilzadeh E, Jafari M, Behzadmehr A. Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diam Relat Mater. 2019. https://doi.org/10.1016/j.diamond.2019.02.002.

    Article  Google Scholar 

  42. Maxwell JC. A treatise on electricity and magnetism. 2nd ed. Oxford UK: Clayton Press; 1881.

    Google Scholar 

  43. Hamilton RL. Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam. 1962. https://doi.org/10.1021/i160003a005.

    Article  Google Scholar 

  44. Murshed SMS, Leong KC, Yang C. Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci. 2008. https://doi.org/10.1016/j.ijthermalsci.2007.05.004.

    Article  Google Scholar 

  45. Wittmar A, Ruiz-Abad D, Ulbricht M. Dispersions of silica nanoparticles in ionic liquids investigated with advanced rheology. J Nanoparticle Res. 2012. https://doi.org/10.1007/s11051-011-0651-1.

    Article  Google Scholar 

  46. Kim S, Kim C, Lee WH, Park SR. Rheological properties of alumina nanofluids and their implication to the heat transfer enhancement mechanism. J Appl Phys. 2011. https://doi.org/10.1063/1.3622513.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Einstein A. Eine neue Bestimmung der Moleküldimensionen. Ann Phys. 1906. https://doi.org/10.1002/andp.19063240204.

    Article  Google Scholar 

  48. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952. https://doi.org/10.1063/1.1700493.

    Article  Google Scholar 

  49. Brenner H, Condiff DW. Transport mechanics in systems of orientable particles. IV. Convective transport. J Colloid Interface Sci. 1974. https://doi.org/10.1016/0021-9797(74)90093-9.

    Article  Google Scholar 

  50. Sharma SK, Gupta SM. Preparation and evaluation of stable nanofluids for heat transfer application: a review. Exp Therm Fluid Sci. 2016. https://doi.org/10.1016/j.expthermflusci.2016.06.029.

    Article  Google Scholar 

  51. Alasli A, Evgin T, Turgut A. Re-dispersion ability of multi wall carbon nanotubes within low viscous mineral oil. Colloids Surfaces A Physicochem Eng Asp. 2018. https://doi.org/10.1016/j.colsurfa.2017.10.085.

    Article  Google Scholar 

  52. Spasic AM (2018) Introduction. In: Spasic AM (ed), Rheology of emulsions—Electrohydrodynamics principles. Academic Press. pp. 1–25. https://doi.org/10.1016/B978-0-12-813836-6.00001-5.

Download references

Acknowledgements

The authors would like to acknowledge the financial support by European Union from European Regional Development Fund. This research was conducted within the project NanoFlu—Polymer additives for lubricating oil and nanofluids (KK.01.1.1.07.0015).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LR and FF. The first draft of the manuscript was written by LR and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. The conceptualization was done by FF and AJ. The funding was enabled by AJ.

Corresponding author

Correspondence to Fabio Faraguna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebrović, L., Jukić, A. & Faraguna, F. Influence of MWCNTs geometry and surface oxidation on rheological and thermal properties of PEG nanofluids. J Therm Anal Calorim 148, 1351–1364 (2023). https://doi.org/10.1007/s10973-022-11558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11558-3

Keywords

Navigation