Skip to main content
Log in

Study on pyrolysis characteristics and kinetics of organic fireproof plugging material by shuffled complex evolution

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Organic fireproof plugging material (OFPM) is widely used to plug the holes of substation cables passing through the wall, and fireproof performance of OFPM plays a vital role in fire safety. In this paper, thermogravimetric experiments of OFPM in nitrogen atmosphere at different heating rates were carried out to study the pyrolysis kinetics for dealing with its fire hazards. The thermogravimetric curves showed four obvious peak regions at about 500 K, 700 K, 850 K and 1000 K, with mass loss of 35%, 10%, 15% and 40%, which indicated that the whole thermal degradation process could be divided into four stages: Dehydrochlorination of neoprene, depolymerization of neoprene, dehydroxylation of kaolinite and decomposition of carbonate. The initial kinetic parameters were calculated by Kissinger method, and the activation energies of the four stages were 64.14, 207.14, 406.12 and 181.65 kJ mol−1, respectively. In addition, Shuffled Complex Evolution (SCE) algorithm was used to optimize the obtained parameters. The predicted results based on the optimized parameters were in good agreement with the experimental data. Eventually, the optimized kinetic parameters were compared with the results of previous studies, and the consistent results also indicated the effectiveness and reliability of coupling Kissinger method and SCE global optimization algorithm in analyzing the thermal degradation kinetics of OFPM in nitrogen atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen M, Liu Y, Jiang L, Huang Z, Yu B, Hua G. Studies about aging and corrosion of galvanized steel and polyvinyl chloride shielded cable caused by fireproof mud. Mater Res Express. 2021;8(4): 046523.

    Article  CAS  Google Scholar 

  2. Zhu Y, Tang F, Zhao Z, Wang Q. Effect of lateral smoke extraction on transverse temperature distribution and smoke maximum temperature under ceiling in tunnel fires. J Therm Anal Calorim. 2022;147(6):4275–84.

    Article  CAS  Google Scholar 

  3. Wang Q. Analysis and solution to safety of fire plugging in curtain wall. Fire Sci Technol. 2010;1.

  4. Sun Z, Zhou Y. Discussion on fire-proof sealing technology and product. Procedia Eng. 2016;135:644–8.

    Article  Google Scholar 

  5. Yang J. Service life of organic fire blocking material. Fire Sci Technol. 2013;7.

  6. Şen U, Pereira H. Pyrolysis behavior of alternative cork species. J Therm Anal Calorim. 2022;147(6):4017–25.

    Article  Google Scholar 

  7. Koutsos V. Chapter 46: Polymeric materials: an introduction. ICE manual of construction materials: volume II: fundamentals and theory; concrete; asphalts in road construction; Masonry. Thomas Telford Ltd; 2009, p. 571–7.

  8. Zhang J, Huang D, Luo S, Huang Y, Guo Y, Liu R, et al. Assessment of micro-scale thermal behaviors and combustion performance of organic fireproof plugging material in air atmosphere. J Vinyl Addit Technol. 2022. https://doi.org/10.1002/vnl.21928.

    Article  Google Scholar 

  9. Andrews A, Adam J, Gawu SK. Development of fireclay aluminosilicate refractory from lithomargic clay deposits. Ceram Int. 2013;39(1):779–83.

    Article  CAS  Google Scholar 

  10. Zhang J, Sun L, Zhang J, Ding Y, Chen W, Zhong Y. Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure. Energy. 2021;229: 120791.

    Article  CAS  Google Scholar 

  11. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  12. Gözke G, Açıkalın K. Pyrolysis characteristics and kinetics of sour cherry stalk and flesh via thermogravimetric analysis using isoconversional methods. J Therm Anal Calorim. 2021;146(2):893–910.

    Article  Google Scholar 

  13. Gravit M, Denisenko V, Borisova A. Fire retardant device for pipeline and cable duct. In: MATEC Web of Conferences. 193. EDP Sciences; 2018:02020.

  14. Vyazovkin S, Burnham AK, Favergeon L, Koga N, Moukhina E, Pérez-Maqueda LA, et al. ICTAC kinetics committee recommendations for analysis of multi-step kinetics. Thermochim Acta. 2020;689: 178597.

    Article  CAS  Google Scholar 

  15. Purnomo DM, Richter F, Bonner M, Vaidyanathan R, Rein G. Role of optimisation method on kinetic inverse modelling of biomass pyrolysis at the microscale. Fuel. 2020;262: 116251.

    Article  CAS  Google Scholar 

  16. Duan Q, Gupta VK, Sorooshian S. Shuffled complex evolution approach for effective and efficient global minimization. J Optimiz Theory App. 1993;76(3):501–21.

    Article  Google Scholar 

  17. Zhang J, Sun L, Zhong Y, Ding Y, Du W, Lu K, et al. Kinetic model and parameters optimization for Tangkou bituminous coal by the bi-Gaussian function and Shuffled Complex Evolution. Energy. 2021:123012.

  18. Ding Y, Huang B, Li K, Du W, Lu K, Zhang Y. Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis. Energy. 2020;195: 117010.

    Article  CAS  Google Scholar 

  19. Aracil I, Font R, Conesa JA, Fullana A. TG-MS analysis of the thermo-oxidative decomposition of polychloroprene. J Anal Appl Pyrolysis. 2007;79(1–2):327–36.

    Article  CAS  Google Scholar 

  20. Lehrle R, Dadvand N, Parsons I, Rollinson M, Horn I, Skinner A. Pyrolysis-GC-MS used to study the thermal degradation of polymers containing chlorine III. Kinetics and mechanisms of polychloroprene pyrolysis. Selected ion current plots used to evaluate rate constants for the evolution of HCl and other degradation products. Polym Degradation Stab. 2000;70(3):395–407.

    Article  CAS  Google Scholar 

  21. Aracil I, Font R, Conesa JA. Chlorinated and nonchlorinated compounds from the pyrolysis and combustion of polychloroprene. Environ Sci Technol. 2010;44(11):4169–75.

    Article  CAS  PubMed  Google Scholar 

  22. Soudais Y, Şerbănescu C, Lemont F, Poussin J-C, Soare G, Bozga G. Kinetic modeling of the polychloroprene pyrolysis under nitrogen atmosphere. Waste Biomass Valorization. 2011;2(1):65–76.

    Article  CAS  Google Scholar 

  23. Caballero J, Conesa J, Martín-Gullón I, Font R. Kinetic study of the pyrolysis of neoprene. J Anal Appl Pyrolysis. 2005;74(1–2):231–7.

    Article  CAS  Google Scholar 

  24. Saikia N, Sengupta P, Gogoi PK, Borthakur PC. Kinetics of dehydroxylation of kaolin in presence of oil field effluent treatment plant sludge. Appl Clay Sci. 2002;22(3):93–102.

    Article  CAS  Google Scholar 

  25. Khan MI, Khan HU, Azizli K, Sufian S, Man Z, Siyal AA, et al. The pyrolysis kinetics of the conversion of Malaysian kaolin to metakaolin. Appl Clay Sci. 2017;146:152–61.

    Article  Google Scholar 

  26. Loannou Z, Zoumpoulakis L, Halikia I, Teloniati T. Overall kinetic study of non-isothermal decomposition of calcium carbonate. Miner Process Extr Metall. 2009;118(2):98–104.

    Article  Google Scholar 

  27. Zhang J, Guo Y, Pau D, Li K, Xie K, Zou Y. Pyrolysis kinetics and determination of organic components and N-alkanes yields of Karamay transformer oil using TG. FTIR and Py-GC/MS analyses Fuel. 2021;306: 121691.

    CAS  Google Scholar 

  28. Wadhwani R, Sutherland D, Moinuddin K, Joseph P. Kinetics of pyrolysis of litter materials from pine and eucalyptus forests. J Therm Anal Calorim. 2017;130(3):2035–46.

    Article  CAS  Google Scholar 

  29. Li K, Huang X, Fleischmann C, Rein G, Ji J. Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger’s method. Energy Fuels. 2014;28(9):6130–9.

    Article  CAS  Google Scholar 

  30. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57(4):217–21.

    Article  CAS  Google Scholar 

  31. Ding Y, Wang C, Chaos M, Chen R, Lu S. Estimation of beech pyrolysis kinetic parameters by shuffled complex evolution. Bioresour Technol. 2016;200:658–65.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang W, Zhang J, Ding Y, Zhou R, Mao S. The accuracy of multiple methods for estimating the reaction order of representative thermoplastic polymers waste for energy utilization. Energy. 2022;239: 122112.

    Article  CAS  Google Scholar 

  33. Duan Q, Sorooshian S, Gupta VK. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J Hydrol. 1994;158(3–4):265–84.

    Article  Google Scholar 

  34. Chaos M. Spectral aspects of bench-scale flammability testing: application to hardwood pyrolysis. Fire Saf Sci. 2014;11:165–78.

    Article  Google Scholar 

  35. Virta RL, Arguelles M. Clay and shale. US Geological Survey Minerals Yearbook. 2003:1–26.

  36. Chukhlanov VY, Tereshina E. Polyorganosiloxane-based heat-resistant sealant with improved dielectric characteristics. Polym Sci Ser C. 2007;49(3):288–91.

    Article  Google Scholar 

  37. Cheng H, Yang J, Liu Q, He J, Frost RL. Thermogravimetric analysis–mass spectrometry (TG–MS) of selected Chinese kaolinites. Thermochim Acta. 2010;507:106–14.

    Article  Google Scholar 

  38. Liu H, Wang C, Chen B, Zhang Z. A further study of pyrolysis of carbon fibre-epoxy composite from hydrogen tank: search optimization for kinetic parameters via a shuffled complex evolution. J Hazard Mater. 2019;374:20–5.

    Article  CAS  PubMed  Google Scholar 

  39. Ding Y, Fukumoto K, Ezekoye OA, Lu S, Wang C, Li C. Experimental and numerical simulation of multi-component combustion of typical charring material. Combust Flame. 2020;211:417–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support sponsored by the Science and Technology Project of State Grid Corporation of China (No. 52120521000F).

Author information

Authors and Affiliations

Authors

Contributions

JZ and YH were involved in the methodology, validation, data curation, and writing. Sha Luo contributed to the methodology, and writing. SW contributed to the data curation. YD was involved in the supervision, funding acquisition, project administration, and writing.

Corresponding authors

Correspondence to Jiaqing Zhang or Yanming Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Huang, Y., Luo, S. et al. Study on pyrolysis characteristics and kinetics of organic fireproof plugging material by shuffled complex evolution. J Therm Anal Calorim 147, 13459–13467 (2022). https://doi.org/10.1007/s10973-022-11555-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11555-6

Keywords

Navigation