Skip to main content
Log in

An effect of thermal radiation on inclined MHD flow in hybrid nanofluids over a stretching/shrinking sheet

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The current work shows an incline MHD and Casson fluid flow with a mixed convective boundary layer with hybrid nanofluid Cu–Al2O3/water flow over a stretching/shrinking sheet. The present study is analyzed using an Al2O3–Cu/H2O hybrid nanofluid with a fixed Prandtl number of 6.8. The governing equation of highly nonlinear partial differential equations is converted into ordinary differential equations using exact similarity transformations. Moreover, the radiation effects are also permitted with help of Rosseland’s approximation. The subsequent system of equations is then investigated analytically with appropriate boundary conditions. The outcomes of this topic can be addressed using a graphical representation with many parameters like radiation, heat source/sink, stretching/shrinking mass transpiration so on. The research shows that the solution depicts a unique explanation for stretching/shrinking sheets and that the explanation demonstrates the dual flora focused on some stretching/shrinking sheet parameters. The nanoparticles are disseminated in water, which serves as the base fluid. Graphs are also used to study the effects of the magnetic parameter, mass transpiration, and heat source/sink parameter on the velocity profile. It has a wide range of uses in the polymer sector, power generators, flow meters, and pumps, among others. The results indicate that the solution illustrates an inimitable solution for the stretching sheet and that the explanation manifests the dual flora aimed at some parameters for the stretching/shrinking sheet. The hybrid nanofluid has significant features improving the heat transfer process and is extensively developed for manufacturing industrial uses. It was found that the basic similarity equations admit two phases for both stretching/shrinking surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Al2O3 :

Aluminum oxide

B. Cs:

Boundary conditions

Cu:

Copper

HNF:

Hybrid nanofluid

MHD:

Magnetohydrodynamic

a :

Stretching/shrinking sheet (s1)

\(B_{0}\) :

Strength of magnetic field (W m2)

\(b_{0}\) :

Constant

\(b > \,0\,\) :

Heated plate

\(b\, < \,0\,\,\) :

Cooled plate

C P :

Constant pressure (W kg1 K1)

d :

Stretching/shrinking parameter

f :

Similarity variable

\({\text{Gr}}_{{\text{x}}}\) :

Grashof number

\(\vec{g}\) :

Gravitational acceleration

\(k^{*}\) :

Mean absorption coefficient (m2)

\(N_{{\text{I}}}\) :

Heat source/sink constraint (\({\text{W}}\,{\text{m}}^{ - 3} \,{\text{K}}^{ - 1}\))

\(N_{{\text{I}}} \, > \,0\) :

Heat source parameter

\(N_{{\text{I}}} \, < \,0\) :

Heat sink parameter

Pr:

Prandtl number

Q :

Chandrasekhar’s formulation

\(Q_{0} \,\,\) :

Heat source/sink of coefficient (\({\text{W}}\,{\text{m}}^{ - 3} \,{\text{K}}^{ - 1}\))

\(Q_{0} > 0\) :

Heat source

\(Q_{0} < 0\) :

Heat sink

\(q_{{\text{r}}}\) :

Radiative heat flux (J s1 m2)

\(q_{{\text{w}}}\) :

Heat flux at the wall (J s1 m2)

\(q_{0} \,\,\) :

Constant

\({\text{Rd}}\) :

Radiation number \(\left( { = \frac{{4\,\sigma *\,T_{\infty }^{3} }}{{3\,\kappa_{f} \,k*}}} \right)\)

\({\text{Re}}_{{\text{x}}}\) :

Reynolds number \(\left( { = \;\frac{{xU_{{\text{w}}} (x)}}{{\nu_{{\text{f}}} }}} \right)\)

T :

Temperature (K)

\(T_{\infty }\) :

Ambient temperature (K)

\(T_{{\text{w}}}\) :

Surface temperature (K)

\(U_{{\text{w}}}\) :

Stretching velocity of the sheet

u, v :

Velocity component (m s1)

\(V_{{\text{w}}}\) :

Mass flux \(\left( { = \,\, - \,\left( {\frac{{3\left| a \right|\,\nu_{{\text{f}}} }}{2}} \right)^{1/2} V_{{\text{c}}} } \right)\) (m s1)

V C :

Suction/injection velocity (m s1)

\(V_{{\text{c}}} > 0\) :

Suction velocity (m s1)

\(V_{{\text{c}}} < 0\) :

Injection velocity (m s1)

x, y :

Coordinate along the sheet (m)

α:

Thermal diffusivity (m2 s1)

\(\beta\) :

Solution domain

\(\Lambda\) :

Mixed parameter \(\left( { = \;\frac{2}{3}\,\frac{{G_{{{\text{rx}}}} }}{{{\text{Re}}_{{\text{x}}}^{2} }}} \right)\)

\(\Lambda \, > \,0\,\) :

Heated plate for assisting flow

\(\Lambda \, < \,0\,\) :

Cooled plate for opposing flow

\(\varepsilon\) :

Casson fluid

\(\kappa\) :

Thermal conductivity (mol m3)

\(\nu\) :

Kinematic viscosity (\({\text{m}}^{2} \,{\text{s}}^{ - 1}\))

\(\eta\) :

Similarity variable

\(\mu\) :

Dynamic viscosity (\({\text{kg}}\,{\text{m}}^{ - 1} \,{\text{s}}^{ - 1}\))

\(\rho\) :

Density (\({\text{kg}}\,{\text{m}}^{ - 3}\))

\(\sigma^{*}\) :

Stefan–Boltzmann constant (\({\text{Wm}}^{ - 2} {\text{K}}^{ - 4}\))

\(\tau\) :

Inclined angle of magnetic field respect to x-axis (rad)

\(\nu\) m :

Magnetic permeability

\(\phi\) :

Volume fraction of nanoparticle

\(\psi\) :

Stream function (m2 s1)

S:

Solid particle involved in HNF

f:

Base fluid

nf:

Nanofluid

w:

Wall condition

\(\infty\) :

For from the sheet

References

  1. Crane LJ. Flow past a stretching plate. Z Andrew Math Phys. 1990;21:645–7.

    Article  Google Scholar 

  2. Sakiadis BC. Boundary layer behavior on continuous solid surfaces: I: boundary layer equations for two-dimensional and axisymmetric flow. AICHE J. 1961;7:26–8.

    Article  CAS  Google Scholar 

  3. Sakiadis BC. Boundary layer behavior on continuous solid surfaces: II: the boundary layer is on a continuous flat surface. AICHE J. 1961;7:221–5.

    Article  CAS  Google Scholar 

  4. Siddheshwar PG, Mahabaleshwar US. Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet. Int Jour Non-linear Mech. 2005;40:807–20.

    Article  Google Scholar 

  5. Gupta PS, Gupta AS. Heat and mass transfer on a stretching sheet with suction or blowing. Can J Chem Eng. 1977;55:744–6.

    Article  Google Scholar 

  6. Mahabaleshwar US. Stretching sheet and convective instability problems in Newtonian. micropolar and viscoelastic liquids. Bangalore University. Ph. D. Thesis. 2005.

  7. Andersson HI, Bech KH, Dandapat BS. The magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Int J Non-linear Mech. 1992;27:929–36.

    Article  Google Scholar 

  8. Andersson HI. MHD flow of a viscoelastic fluid past a stretching surface. Acta Mech. 1992;95:227–30.

    Article  Google Scholar 

  9. Bhattacharyya K. MHD stagnation-point flow of casson fluid and heat transfer over a stretching sheet with thermal radiation. J Thermodyn. 2013;9:169674.

    Google Scholar 

  10. Sarpakaya T. Flow of non-Newtonian fluids in a magnetic field. AIChEJ. 1961;7:324–8.

    Article  Google Scholar 

  11. Mahabaleshwar US. The combined effect of temperature and gravity modulations on the onset of magneto-convection in weak electrically conducting micropolar liquids. Int J Eng Sci. 2007;45:525–40.

    Article  Google Scholar 

  12. Mahabaleshwar US. External regulation of convection in a weak electrically conducting non-Newtonian liquid with g-jitter. J Magn Magn Mater. 2008;320:999–1009.

    Article  Google Scholar 

  13. Siddheshwar PG, Mahabaleshwar US. Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet. Int J Nonlinear Mech. 2005;40:807–20.

    Article  Google Scholar 

  14. Mahabaleshwar US, Nagaraju KR, Vinay-Kumar PN, Kelson NA. An MHD Navier’s slip flow over axisymmetric linear stretching sheet using differential transform method. Int J Appl Comput Math. 2017;4:30.

    Article  Google Scholar 

  15. Mahabaleshwar US, Vinay Kumar PN, Sheremet M. Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction. Springer Plus. 2016;5:1901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mahabaleshwar US, Nagaraju KR, Sheremet MA, Baleanu D, Lorenzini E. Mass transpiration on Newtonian flow over a porous stretching/shrinking sheet with slip. Chin J Phys. 2020;63:130–7.

    Article  Google Scholar 

  17. Mahabaleshwar US, Vinay Kumar PN, Nagaraju KR, Gabriella B, Nayakar RSN. A new exact solution for the flow of a fluid through porous media for a variety of boundary conditions. Phys Fluids. 2019;4:125.

    CAS  Google Scholar 

  18. Mahabaleshwar US, Nagaraju KR, Vinay Kumar PN, Nadagouda MN, Bennacer R, Sheremet MA. Effects of Duffour and Sort mechanisms on MHD mixed convective-radiative non-Newtonian liquid flow and heat transfer over a porous sheet. J Thermal Sci Eng Prog. 2020;16:100459.

    Article  Google Scholar 

  19. Mahabaleshwar US, Nagaraju KR, Nadagouda MN, Bennacer R, Baleanu D. An MHD viscous liquid stagnation point flow and heat transfer with thermal radiation & transpiration. J Thermal Sci Eng Prog. 2020;16:100379.

    Article  Google Scholar 

  20. Mastroberardino A, Mahabaleshwar US. Mixed convection in viscoelastic flow due to a stretching sheet in a porous medium. J Porous Media. 2013;16:483–500.

    Article  Google Scholar 

  21. Mahabaleshwar US, Sarris IE, Lorenzini G. Effect of radiation and Navier slip boundary of Walters’ liquid B flow over a stretching sheet in a porous media. Int J Heat Mass Transf. 2018;127:1327–37.

    Article  Google Scholar 

  22. Anuar NS, Norfifah B, Norihan MA, Haliza R. Mixed convection flow and heat transfer of carbon nanotubes over an exponentially stretching/shrinking sheet with suction and slip effect. J Adv Res Fluid Mech Thermal Sci. 2019;59:232–42.

    Google Scholar 

  23. Anwar T, Kumam P, Asifa KI, Phatipha T. Generalized unsteady MHD natural convective flow of Jeffery model with ramped wall velocity and Newtonian heating: a Caputo-Fabrizio approach. Chin J Phys. 2020;68:849.

    Article  Google Scholar 

  24. Khan WA, Khan ZH, Rahi M. Fluid flow and heat transfer of carbon nanotubes along with a flat plate with Navier slip boundary. Appl Nanosci. 2014;4:633–41.

    Article  CAS  Google Scholar 

  25. Shalini J, Manjeet K, Amit P. Unsteady MHD chemically reacting mixed convection nano-fluids flow past an inclined pours stretching sheet with slip effect and variable thermal radiation and heat source. Sci Direct. 2018;5:6297–312.

    Google Scholar 

  26. Yana SR, Mohsen I, Mikhail AS, Ioan I, Hakan F, Oztope MA. Inclined Lorentz force impact on convective-radiative heat exchange of micropolar nanofluid inside a porous enclosure with tilted elliptical heater. Int Commun Heat Mass Transf. 2020;117:104762.

    Article  Google Scholar 

  27. Anusha T, Huang-Nan H, Mahabaleshwar US. Two-dimensional unsteady stagnation point flow of Casson hybrid nanofluid over a permeable flat surface and heat transfer analysis with radiation. J Taiwan Inst Chem Eng. 2021;127:79.

    Article  CAS  Google Scholar 

  28. Anusha T, Mahabaleshwar US, Yahya S. An MHD of nanofluid flow over a porous stretching/shrinking plate with mass transpiration and Brinkman ratio. Transp Porous Media. 2021;142:333.

    Article  Google Scholar 

  29. Mahabaleshwar US, Anusha T, Sakanaka PH, Suvanjan B. Impact of inclined Lorentz force and Schmidt number on chemically reactive Newtonian fluid flow on a stretchable surface when Stefan blowing and thermal radiation are significant. Arab J Sci Eng. 2021;46:12427.

    Article  CAS  Google Scholar 

  30. Mahabaleshwar US, Sneha KN, Huang-Nan H. An effect of MHD and radiation on CNTS-Water-based nanofluid due to a stretching sheet in a Newtonian fluid. Case Stud Therm Eng. 2021;28:101462.

    Article  Google Scholar 

  31. Venkata Ramudu AC, Anantha Kumar K, Sugunamma V, Sandeep N. Impact of soret and duffour on MHD casson fluid flow past a stretching surface with convective–diffusive conditions. J Therm Anal Calorim. 2021;147:2653.

    Article  Google Scholar 

  32. Anuar NS, Norfifah B, Turkyilmazoglu M, Norihan MA, Haliza R. Analytical and stability analysis of MHD flow past a nonlinearly deforming vertical surface in Carbon nanotubes. Alex Eng J. 2020;59:497–507.

    Article  Google Scholar 

  33. Rosseland S. Astrophysik and atomtheoretische Grundlagen. Berlin: Springer-Verlag; 1931.

    Book  Google Scholar 

  34. Mahabaleshwar US, Vishalakshi AB, Andersson HI. Hybrid nanofluid flow past a stretching/shrinking sheet with thermal radiation and mass transpiration. Chinese Jour Phys. 2022;75:152–68.

    Article  CAS  Google Scholar 

  35. Mahabaleshwar US, Vishalakshi AB, Andersson HI. Hybrid nanofluid flow past a stretching/shrinking sheet with thermal radiation and mass transpiration. Chin J Phys. 2022;75:152–68.

    Article  CAS  Google Scholar 

  36. Mahabaleshwar US, Aly EH, Anusha T. MHD slip flow of a Casson hybrid nanofluid over a stretching/shrinking sheet with thermal radiation. Chin J Phys. 2022. https://doi.org/10.1016/j.cjph.2022.06.008.

    Article  Google Scholar 

  37. Aly EH, Mahabaleshwar US, Anusha T, Pop I. Exact solutions for wall jet flow of hybrid nanofluid. J Nanofluids. 2022;11:373–82.

    Article  Google Scholar 

  38. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekhar M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf A Physicochem Eng Aspects. 2011;388(1–3):41–8.

    Article  CAS  Google Scholar 

  39. Turkyilmazoglu M. Analytical solutions to mixed convection MHD fluid flow induced by a nonlinearly deforming permeable surface. Commun Nonlinear Sci Numer Simul. 2018;63:373–9.

    Article  Google Scholar 

  40. Basma S, Ganesh-Kumar K, Gnaneswara-Reddy M, Sudha R, Najib H, Huda A, Mohammad R. Slip flow and radiative heat transfer behavior of Titanium alloy and ferromagnetic nanoparticles along with suspension of dusty fluid. J Mol Liquids. 2019;290:111223.

    Article  Google Scholar 

  41. Basma S, Essam Y, Mir WA, Syed GH. Numerical simulation of magnetic dipole flow over a stretching sheet in the presence of non-uniform heat source/sink. Front Energy Res. 2021;9:767751.

    Article  Google Scholar 

  42. Sreenivasulu P, Poornima T, Malleswari B, Bhaskar Reddy N, Basma S. Viscous dissipation impact on electrical resistance heating distributed Carreau nanoliquid along stretching sheet with zero mass flux. Eur Phys J Plus. 2020;135:705.

    Article  Google Scholar 

  43. Turkyilmazoglu M. Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids. Chem Eng Sci. 2012;84:182–7.

    Article  CAS  Google Scholar 

  44. Merkin JH. On dual solutions occurring in mixed convection in a porous medium. J Eng Math. 1986;20:171–9.

    Article  Google Scholar 

  45. Weidman D, Kubitschek D, Davis A. The effect of transpiration on self-similar boundary layer flow over a moving surface. Int J Eng Sci. 2006;44:730–7.

    Article  CAS  Google Scholar 

  46. Harris SD, Ingham DB, Pop I. Mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transp Porous Media. 2009;77:267–85.

    Article  Google Scholar 

  47. Pavlov KB. Magnetohydrodynamic flow of an incompressible viscous liquid caused by deformation of plane surface. Magnetnaya Gidrodinamica. 1974;4:146–7.

    Google Scholar 

  48. Siddheshwar PG, Chan A, Mahabaleshwar US. Suction-induced magnetohydrodynamics of a viscoelastic fluid over a stretching surface within a porous medium. IMA J Appl Math. 2014;79:445–58.

    Article  Google Scholar 

  49. Turkyilmazoglu M. Analytical solutions to mixed convection MHD fluid flow induced by nonlinearly deforming permeable surface. Commun Nonlinear Sci Numer Simul. 2018;63:373–9.

    Article  Google Scholar 

Download references

Acknowledgements

The author K. N. Sneha is thankful to the National Fellowship and Scholarship for Higher Education for ST (NFST), New Delhi, India for financial support in the form of Junior Research Fellowship: Awardee No. 202021-NFST-KAR-01224, 13/08/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvanjan Bhattacharyya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sneha, K.N., Mahabaleshwar, U.S. & Bhattacharyya, S. An effect of thermal radiation on inclined MHD flow in hybrid nanofluids over a stretching/shrinking sheet. J Therm Anal Calorim 148, 2961–2975 (2023). https://doi.org/10.1007/s10973-022-11552-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11552-9

Keywords

Navigation