Skip to main content
Log in

An investigation by thermal analysis of glycosidic natural sweeteners

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The demand for non-nutritive sweeteners of natural origin has increased in recent years, mainly driven by health concerns and the quest for a healthier lifestyle. This work aimed to investigate the content of steviol glycosides from Stevia rebaudiana Bertoni and cucurbitane glycosides from monk fruit in commercial samples of sweeteners using thermal analysis techniques (TG/DTG, DTA, and DSC), FTIR, EDS. Four commercial samples were analyzed based on steviol glycosides (E, E2, E3, E4) and one sample based on cucurbitane glycosides (M1). The thermogravimetry (TG) results showed that the thermal stability order of the samples till 200 °C was equal to E4 > M1 ≈ E2 > E > E3. Despite being marketed based on different natural glycosides, thermal analysis techniques showed similar thermal profiles between E2 and M1 samples. The DSC curves of these samples showed clear erythritol melting events, and the FTIR spectra confirmed the presence of this polyol in E2 and M1 samples. On the other hand, the DSC curve and the FTIR spectrum confirmed the presence of xylitol in the composition of the E4 sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Carocho M, Morales P, Ferreira ICFR. Sweeteners as food additives in the XXI century: a review of what is known, and what is to come. Food Chem Toxicol. 2017;107:302–17.

    Article  CAS  PubMed  Google Scholar 

  2. Buniowska M, Carbonell-Capella JM, Znamirowska A, Zulueta A, Frígola A, Esteve MJ. Steviol glycosides and bioactive compounds of a beverage with exotic fruits and Stevia rebaudiana Bert. As affected by thermal treatment. Int J Food Prop. 2020;23:255–68.

    Article  CAS  Google Scholar 

  3. Saraiva A, Carrascosa C, Raheem D, Ramos F, Raposo A. Natural sweeteners: the relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. Int J Environ Res Public Health. 2020;17(17):6285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nielsen IQ 2022. Sweeteners are about much more than taste. 2022. https://nielseniq.com/global/en/insights/analysis/2022/sweeteners-are-about-much-more-than-taste/ Accessed 14 Apr 2022.

  5. Soejarto DD. Botany of Stevia and Stevia rebaudiana. Stevia: The genus Stevia. Taylor and Francis, London and New York, 2002.

  6. Gardana C, Simonetti P. Determination of steviol glycosides in commercial extracts of Stevia rebaudiana and sweeteners by ultra-high performance liquid chromatography Orbitrap mass spectrometry. J Chromatogr A. 2018;30:8–14.

    Article  Google Scholar 

  7. Peteliuk V, Rybchuk L, Bayliak M, Storey KB, Lushchak O. Natural sweetener Stevia rebaudiana: functionalities, health benefits and potential risks. EXCLI J. 2021;20:1412–30.

    PubMed  PubMed Central  Google Scholar 

  8. Yildiz M, Karhan M. Characteristics of some beverages adjusted with stevia extract, and persistence of steviol glycosides in the mouth after consumption. Int J Gastron Food Sci. 2021;24: 100326.

    Article  Google Scholar 

  9. Ahmad J, Khan I, Blundell R, Azzopardi J, Mahomoodally MF. Stevia rebaudiana Bertoni: na updated review of its health benefits, industrial applications and safety. Trends Food Sci Technol. 2020;100:177–89.

    Article  CAS  Google Scholar 

  10. Chen J, Xia Y, Sui X, Peng Q, Zhang T, Li J, Zhang J. Steviol, a natural product inhibits proliferation of the gastrointestinal cancer cells intensively. Oncotarget. 2018;9(41):26299–308.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Abou-Arab EA, Abu-Salem FM. Evaluation of bioactive compounds of Stevia rebaudiana leaves and callus. Afr J Food Sci. 2010;4(10):627–34.

    CAS  Google Scholar 

  12. Adkin KM, Kulkarni YA. Glycosides from natural sources in the treatment of diabetes mellitus. In: Chen H, Zhang M, editors. Structure and health effects of natural products on diabetes mellitus. Singapure: Springer; 2021.

    Google Scholar 

  13. Gong X, Chen N, Ren K, Jia J, Wei K, Zhang L, Lv Y, Wang J, Li M. The fruits of Siraitia grosvenorii: a review of a chinese food-medicine. Front Pharmacol. 2019. https://doi.org/10.3389/fphar.2019.01400.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Soejarto DD, Addo EM, Kinghorn AD. Highly sweet compounds of plant origin: from ethnobotanical observations to wide utilization. J Ethnopharmacol. 2019;243: 112056.

    Article  CAS  PubMed  Google Scholar 

  15. Liu C, Dai L, Liu Y, Dou D, Sun Y, Ma L. Pharmacological activities of mogrosides. Future Med Chem. 2018;10(8):845–50.

    Article  CAS  PubMed  Google Scholar 

  16. Fry JC. Natural low-calorie sweeteners. In: Baines D, Seal R, editors. Natural food additives ingredients and flavourings. Sawston: Woodhead Publishing; 2012. p. 41–75.

    Chapter  Google Scholar 

  17. Wang R, Chiu CH, Lu TJ, Lo YC. Biotransformation of Mogrosides. In: Mérillon JM, Ramawat K, editors. Sweeteners. Reference series in phytochemistry. Cham: Springer; 2018.

    Google Scholar 

  18. Younes M, Aquilina G, Engel KH, Fowler P, Fernandez MJF, Furst P, Gurtler R, Gundert-Remy U, Husoy T, Mennes W, Moldeus P, Oskarsson A, Shah R, Waalkens-Berendsen I, Wolfle D, Degen D, Herman L, Gott D, Leblanc JC, Giarola A, Rincon AM, Tard A, Castle L. Safety of use of Monk fruit extract as a food additive in different food categories. EFSA Panel on food additives and flavourings (FAF). EFSA J. 2019;17(12):5921.

  19. Kroyer GT. Stevioside and Stevia-sweetener in food: application, stability and interaction with food ingredients. J Verbr Lebensm. 2010;5:225–9.

    Article  CAS  Google Scholar 

  20. Jooken E, Amery R, Struyf T, Duquenne B, Geuns J, Meesschaert B. Stability of steviol glycosides in several food matrices. J Agric Food Chem. 2012;60:10606–12.

    Article  CAS  PubMed  Google Scholar 

  21. Nunes WDG, Russo HM, Bolzani VS, Caires FJ. Thermal characterization and compounds identification of commercial Stevia rebaudiana Bertoni sweeteners and thermal degradation products at high temperatures by TG-DSC, IR and LC-MS/MS. J Therm Anal Calorim. 2019;138:3577–86.

    Google Scholar 

  22. Carvalho LC, Segato MP, Nunez RS, Novak C, Cavalheiro ETG. Thermoanalytical studies of sweeteners. J Therm Anal Calorim. 2009;97:359–65.

    Article  Google Scholar 

  23. Medina DA, Ferreira APG, Cavalheiro ETG. Thermal investigation on polymorphism in sodium saccharine. J Therm Anal Calorim. 2014;117:361–7.

    Article  CAS  Google Scholar 

  24. Medina DAV, Ferreira APG, Cavalheiro ETG. Polymorphism and thermal behaviour of sodium cyclamate. J Therm Anal Calorim. 2019;137:1307–13.

    Article  CAS  Google Scholar 

  25. Mothé CG, Azevedo AD. Análise Térmica de Materiais. São Paulo: Artliber; 2009.

    Google Scholar 

  26. Mothé MG, Viana LM, Mothé CG. Thermal property study of keratin from industrial residue for extraction, processing and application. J Therm Anal Calorim. 2018;131(1):417–26.

    Article  Google Scholar 

  27. Santana NS, Mothé MG, Mothé CG. Thermal and rheological behavior of non-nutritive sweeteners. J Therm Anal Calorim. 2019;138:3577–86.

    Article  Google Scholar 

  28. Figura LO. The physical modification of lactose and its thermoanalytical identification. Thermochim Acta. 1993;222(2):187–94.

    Article  CAS  Google Scholar 

  29. Figura LO, Epple M. Anhydrous α-lactose. A study with DSC and TXRD. J Therm Anal Calorim. 1995;44:45–53.

    Article  CAS  Google Scholar 

  30. Gombás A, Révész PS, Kata M, Junior GR, Erós I. Quantitative determination of crystallinity of α-lactose monohydrate by DSC. J Therm Anal Calorim. 2002;68:503–10.

    Article  Google Scholar 

  31. Morais LC, Dweck J, Valenzuela-Diaz FR, Büchler PM. Characterization of lactose and derived products in dairy product industry effluents processing. J Therm Anal Calorim. 2005;82(2):315–8.

    Article  CAS  Google Scholar 

  32. Carvalho LC. Estudos termoanalíticos dos edulcorantes acessulfame-K, aspartame, ciclamato, esteviosídeo e sacarina. Dissertation (Masters in Chemistry), São Carlos Institute of Chemistry, São Paulo University; 2007. pp.101.

  33. Tong B, Tan ZC, Zhang JN, Wang SX. Thermodynamic investigation of several natural polyols. Part III. Heat capacities and thermodynamic properties of erythritol. J Therm Anal Calorim. 2009;95:469–75.

    Article  CAS  Google Scholar 

  34. Hadjikinova R, Marudova M. Thermal behaviour of confectionary sweeteners’ blends. Bulg Chem Commun. 2016;48:446–50.

    Google Scholar 

  35. Saikrishnan V, Karthikeyan A, Laksmisankar S, Beemkumar N. Thermophysical characteristic analysis of edible erythritol and xylitol for their use as phase change materials. Int J Sci Technol Res. 2019;8(11):644–9.

    Google Scholar 

  36. Del Barrio EP, Godin A, Duquesne M, Daranlot J, Jolly J, Alshaer W, Kouadio T, Sommier A. Characterization of different sugar alcohols as phase change materials for thermal energy storage applications. Sol Energy Mater Sol Cells. 2017;159:560–9.

    Article  Google Scholar 

  37. Tong B, Tan ZC, Shi Q, Li YS, Yue DT, Wang SX. Thermodynamic investigation of several natural polyols (I): heat capacities and thermodynamic properties of xylitol. Thermochim Acta. 2007;457:20–6.

    Article  CAS  Google Scholar 

  38. Regnat K, Mach RL, Mach-Aigner AR. Erythritol as sweetener-wherefrom and whereto? Appl Microbiol Biotechnol. 2018;102(2):587–95.

    Article  CAS  PubMed  Google Scholar 

  39. Queiroz SS, Jofre FM, Mussatto SI, Felipe MGA. Scaling up xylitol bioproduction: challenges to achieve a profitable bioprocess. Renew Sust Energ Rev. 2022;154: 111789.

    Article  CAS  Google Scholar 

  40. Rzechonek DA, Dobrowolski A, Rymowicz W, Mironczuk AM. Recent advances in biological production of erythritol. Crit Rev Biotechnol. 2018;38:620–33.

    Article  CAS  PubMed  Google Scholar 

  41. Newbury DE, Ritchie NWM. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS). J Mater Sci. 2015;50:493–518.

    Article  CAS  PubMed  Google Scholar 

  42. Yesilkir-Baydar S, Oztel ON, Cakir-Koc R, Candayan A. Chapter 11 - Evaluation techniques. Nanobiomaterials Science, Development and evaluation. Edited by Mehdi Razavi and Avnesh Thakor; 2017.

Download references

Acknowledgements

This work has made an homage in memory of Professor Cheila Gonçalves Mothé, a Great Scientist, a fantastic person, and a true mentor for some of the co-authors.

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, 001, Naienne S Santana.

Author information

Authors and Affiliations

Authors

Contributions

The authors would like to thank the Brazilian Council for Scientific and Technological Development (CNPq), the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES), Carlos Chagas Filho Foundation for Research Support of the State of Rio de Janeiro (FAPERJ), for their financial support. The authors also express gratitude to Thermal Analysis RJ Professor Ivo Giolito Laboratory, Leni Leite Rheology Laboratory/UFRJ, and CETEM (Brazil).

Corresponding author

Correspondence to Michelle G. Mothé.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare relevant to this article’s content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cheila G. Mothé: in memoriam.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santana, N.d.S., Mothé, C.G., de Souza, M.N. et al. An investigation by thermal analysis of glycosidic natural sweeteners. J Therm Anal Calorim 147, 13275–13287 (2022). https://doi.org/10.1007/s10973-022-11550-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11550-x

Keywords

Navigation