Skip to main content
Log in

Impact of thermal non-equilibrium on magnetoconvection in a porous enclosure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Stability analyses of magnetoconvection in thermally non-equilibrium high porosity liquid-saturated porous enclosure are carried out. The porous enclosure is subjected to vertical adiabatic and horizontal stress-free, isothermal boundaries, and the weighted residual Galerkin technique is employed to perform the analysis. The linear theory reveals that magnetoconvection in a shallow enclosure is earlier than in tall and square enclosures. Asymptotic solutions of Rayleigh number are reported for large and small inter-phase heat transfer coefficient values. Magnetoconvection in the liquid enclosure and low porosity enclosure can be obtained in the particular case of the current study. Thermal non-equilibrium is more prominent in the high-porosity enclosure than in the low-porosity enclosure. Lorenz model is transformed into the Ginzburg Landau equation using the multi-scale method. The heat transport at the bottom wall is quantified through the weighted average Nusselt number. The Brinkman number, the inverse Darcy number, the Chandrasekhar number, and the inter-phase heat exchange parameter stabilize the system and diminish the heat transport, whereas the thermal conductivity ratio shows the opposite effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Thompson W. Thermal convection in a magnetic field. Lond Edinburgh Dublin Philos Mag J Sci. 1951;42(335):1417–32.

    Article  Google Scholar 

  2. Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Oxford, UK: Clarendon Press; 1961.

    Google Scholar 

  3. Catton I. Natural convection in enclosures. Proc Sixth Int Heat Trans Conf.; 1978. p. 13–31.

  4. Walker KL, Homsy GM. Convection in a porous cavity. J Fluid Mech. 1978;87:449–74.

    Article  Google Scholar 

  5. Davis SH. Convection in a box: linear theory. J Fluid Mech. 1967;30:465–78.

    Article  Google Scholar 

  6. Ostrach S. Natural convection in enclosures. Adv Heat Transf. 1972;8:161–227.

    Article  CAS  Google Scholar 

  7. Ostrach S. Natural convection in enclosures. J Heat Transf. 1988;110:1175–90.

    Article  CAS  Google Scholar 

  8. Beckermann C, Ramadhyani S, Viskanta R. Natural convection flow and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure. J Heat Transf. 1987;109:363–70.

    Article  CAS  Google Scholar 

  9. Mukutmoni D, Yang KT. Rayleigh-Bénard convection in a small aspect ratio enclosure: part II—bifurcation to chaos. J Heat Transf. 1993;115:367–76.

    Article  CAS  Google Scholar 

  10. Bahloul A. Boundary layer and stability analysis of natural convection in a porous cavity. Int J Therm Sci. 2006;45(7):635–42.

    Article  Google Scholar 

  11. Saravanan S, Hakeem AKA, Kandaswamy P. Hydromagnetic natural convection in a partially heated cavity. Int J Heat Technol. 2007;25:131–6.

    Google Scholar 

  12. Chen YY, Li BW, Zhang JK. Spectral collocation method for natural convection in a square porous cavity with local thermal equilibrium and non-equilibrium models. Int J Heat Mass Transf. 2016;96:84–96.

    Article  Google Scholar 

  13. Alsabery A, Chamkha AJ, Hashim I, Siddheshwar PG. Effects of nonuniform heating and wall conduction on natural convection in a square porous cavity using LTNE model. J Heat Transf. 2017;139:122008.

    Article  Google Scholar 

  14. Nield DA, Bejan A. Convection in porous media. New Zealand: Springer; 2006.

    Google Scholar 

  15. Vafai K. Handbook of porous media. New York: CRC Press; 2015.

    Book  Google Scholar 

  16. Quintard M, Whitaker S. Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments. Int J Heat Mass Transf. 1995;38(15):2779–96.

    Article  CAS  Google Scholar 

  17. Banu N, Rees DAS. Onset of Darcy-Bénard convection using a thermal non-equilibrium model. Int J Heat Mass Transf. 2002;45:2221–8.

    Article  Google Scholar 

  18. Malashetty MS, Shivakumara IS, Kulkarni S. The onset of Lapwood-Brinkman convection using a thermal non-equilibrium model. Int J Heat Mass Transf. 2005;48:1155–63.

    Article  Google Scholar 

  19. Postelnicu A, Rees DAS. The onset of Darcy-Brinkman convection in a porous layer using a thermal nonequlibrium model part I: stress-free boundaries. Int J Eng Res. 2003;27:961–73.

    Google Scholar 

  20. Postelnicu A. The onset of a Darcy-Brinkman convection using a thermal nonequilibrium model. Part II. Int J Therm Sci. 2008;47:1587–94.

    Article  Google Scholar 

  21. Siddheshwar PG, Siddabasappa C. Linear and weakly nonlinear stability analyses of two-dimensional, steady Brinkman-Bénard Convection using local thermal non-equilibrium model. Transp Porous Media. 2017;120:605–31.

    Article  CAS  Google Scholar 

  22. Siddabasappa C. A study on the influence of a local thermal non-equilibrium on the onset of Darcy-Bénard convection in a liquid-saturated anisotropic porous medium. J Therm Anal Calorim. 2022;147(10):5937–47.

    Article  CAS  Google Scholar 

  23. Corcione M. Effects of the thermal boundary conditions at the sidewalls upon natural convection in rectangular enclosures heated from below and cooled from above. Int J Therm Sci. 2003;42:199–208.

    Article  Google Scholar 

  24. Caronna G, Corcione M, Habib E. Natural convection heat and momentum transfer in rectangular enclosures heated at the lower portion of the sidewalls and the bottom wall and cooled at the remaining upper portion of the sidewalls and the top wall. Heat Trans Eng. 2009;30:1166–76.

    Article  CAS  Google Scholar 

  25. Cheikh NB, Beya BB, Lili T. Influence of thermal boundary conditions on natural convection in a square enclosure partially heated from below. Int Commun Heat Mass Transf. 2007;34:369–79.

    Article  Google Scholar 

  26. Corvaro F, Paroncini M. Experimental analysis of natural convection in square cavities heated from below with 2D-PIV and holographic interferometry techniques. Exp Therm Fluid Sci. 2007;31:721–39.

    Article  Google Scholar 

  27. Basak T, Roy S, Paul T, Pop I. Natural convection in a square cavity filled with a porous medium: effects of various thermal boundary conditions. Int J Heat Mass Transf. 2006;49:1430–41.

    Article  CAS  Google Scholar 

  28. Baytas AC. Buoyancy-driven flow in an enclosure containing time periodic internal sources. Heat Mass Transf. 1996;31:113–9.

    Article  CAS  Google Scholar 

  29. Marcondes J, de Medeiros JM, Gurgel FM. Numerical analysis of natural convection in cavities with variable porosity. Numer Heat Transf Part A Appl. 2001;40:403–20.

    Article  Google Scholar 

  30. Nansteel MW, Greif R. An investigation of natural convection in enclosures with two-and three-dimensional partitions. Int J Heat Mass Transf. 1984;27:561–71.

    Article  Google Scholar 

  31. Prasad V, Kulacki FA. Natural convection in a rectangular porous cavity with constant heat flux on one vertical wall. J Heat Transf. 1984;106:152–7.

    Article  Google Scholar 

  32. Moffatt H. Generation of magnetic fields in electrically conducting fluids. Cambridge: Cambridge University Press; 1978.

    Google Scholar 

  33. Weiss NO. Convection in an imposed magnetic field. Part 1. The development of nonlinear convection. J Fluid Mech. 1981;108:247–72.

    Article  Google Scholar 

  34. Knobloch E, Weiss NO, Da Costa LN. Oscillatory and steady convection in a magnetic field. J Fluid Mech. 1981;113:153–86.

    Article  Google Scholar 

  35. Lortz D. A stability criterion for steady finite amplitude convection with an external magnetic field. J Fluid Mech. 1965;23(1):113–28.

    Article  Google Scholar 

  36. Cowling TG. Magnetohydrodynamics. New York:Interscience Publishers; 1957.

    Google Scholar 

  37. Layek GC, Pati NC. Bifurcations and hyperchaos in magnetoconvection of non-Newtonian fluids. Int J Bifurcation Chaos. 2018;28(10):1830034.

    Article  Google Scholar 

  38. Proctor M, Weiss N. Magnetoconvection. Rep Prog Phys. 1982;45(11):1317.

    Article  Google Scholar 

  39. Rudraiah N, Kumudini V, Unno W. Theory of nonlinear magnetoconvection and its application to solar convection problems. I, II. Publ Astron Soc Jpn. 1985;37:183–233.

    Google Scholar 

  40. Saeid NH, Pop I. Non-Darcy natural convection in a square cavity filled with a porous medium. Fluid Dyn Res. 2005;36:35–43.

    Article  Google Scholar 

  41. Saleh H, Alhashash AYN, Hashim I. Rotation effects on non-Darcy convection in an enclosure filled with porous medium. Int Commun Heat Mass Transf. 2013;43:105–11.

    Article  Google Scholar 

  42. Siddheshwar PG, Siddabasappa C. Unsteady natural convection in a liquid-saturated porous enclosure with local thermal non-equilibrium effect. Meccanica. 2020;55(9):1763–80.

    Article  Google Scholar 

  43. Nithyadevi N, Yang RJ. Magnetoconvection in an enclosure of water near its density maximum with Soret and Dufour effects. Int J Heat Mass Transf. 2009;52(7–8):1667–76.

    Article  CAS  Google Scholar 

  44. Kandaswamy P, Sundari SM, Nithyadevi N. Magnetoconvection in an enclosure with partially active vertical walls. Int J Heat Mass Transf. 2008;51(7–8):1946–54.

    Article  CAS  Google Scholar 

  45. Bhuvaneswari M, Sivasankaran S, Kim YJ. Magnetoconvection in a square enclosure with sinusoidal temperature distributions on both side walls. Numer Heat Transf Part A Appl. 2011;59(3):167–84.

    Article  CAS  Google Scholar 

  46. Sharma MK, Mahajan A. Onset of convection in a magnetic nanofluid-saturated porous medium under local thermal nonequilibrium conditions. Spec Top Rev Porous Media Int J. 2021;12(4):59–77.

    Article  Google Scholar 

  47. Yadav D, Mohamad AA, Awasthi MK. The Horton-Rogers-Lapwood problem in a Jeffrey fluid influenced by a vertical magnetic field. Proc Inst Mech Eng Part E J Process Mech Eng. 2021;235:2119–28.

    Article  CAS  Google Scholar 

  48. Shivakumara IS, Mamatha AL, Ravisha M. Linear and weakly nonlinear magnetoconvection in a porous medium with a thermal nonequilibrium model. Afr Mat. 2016;27(7):1111–37.

    Article  Google Scholar 

  49. Nield DA. Impracticality of MHD convection in a porous medium. Transp Porous Media. 2008;73(3):379–80.

    Article  Google Scholar 

  50. Aurnou J, Olson P. Experiments on Rayleigh-Bénard convection, magnetoconvection and rotating magnetoconvection in liquid gallium. J Fluid Mech. 2001;430:283–307.

    Article  CAS  Google Scholar 

  51. Gillet N, Brito D, Jault D, Nataf HC. Experimental and numerical studies of magnetoconvection in a rapidly rotating spherical shell. J Fluid Mech. 2007;580:123–43.

    Article  CAS  Google Scholar 

  52. Siddheshwar PG, Siddabasappa C, Laroze D. Küppers-Lortz Instability in the Rotating Brinkman-Bénard Problem. Transp Porous Media. 2020;435:465–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Siddabasappa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddabasappa, C., Sakshath, T.N. Impact of thermal non-equilibrium on magnetoconvection in a porous enclosure. J Therm Anal Calorim 147, 14539–14553 (2022). https://doi.org/10.1007/s10973-022-11546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11546-7

Keywords

Navigation