Skip to main content
Log in

Thermodynamic-based environmental and enviroeconomic assessments of a turboprop engine used for freight aircrafts under different flight phases

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the kerosene fueled turboprop engine of a freight aircraft is investigated along with exergy dynamic, sustainability, and thermodynamic-based environmental and enviroeconomic analyses under 7 different flight phase points (starting from 1 to ending at 7) and 5 different flight phases during a flight cycle which is assumed to be performed per one day. It is found that maximum (88.756%) and minimum (0.492%) exergetic improvement potential ratios are found in the flight phase point 3 for the burner and intermediate-pressure turbine, respectively. Minimum exergy destruction improvement ratio (5.6%) is calculated for the high-pressure turbine at the flight phase point 3, while maximum rate (33.1%) is expressed for the burner at the flight phase point 1. Maximum released carbon dioxide emissions are found as 0.04605 kgCO2 kN−1 s−1, while maximum specific fuel consumption is 14.596 g kN−1 s−1 at the cruise phase between flight phase points of 4–6. Maximum environmental parameter (18,418.66 kgCO2 day_cycle−1) and emitted carbon dioxide price (2136.56 € day_cycle−1) are found between the flight phase points of 4–6 (cruise flight phase), while corresponding minimum rates are determined as 73.08 kgCO2 day_cycle−1 and 8.48 € day_cycle−1 in the takeoff phase between flight phase points of 1–2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alkaabi KA, Debbage KG. The geography of air freight: connections to U.S. metropolitan economies. J Transp Geogr. 2011;19(6):1517–29. https://doi.org/10.1016/j.jtrangeo.2011.04.004.

    Article  Google Scholar 

  2. Goetz AR, Budd L. The geographies of air transport. Transport and mobility series. Farnham: Ashgate; 2014.

    Google Scholar 

  3. Lordan O, Sallan JM, Simo P, Gonzalez-Prieto D. Robustness of the air transport network. Transp Res Part E Logist Transp Rev. 2014;68:155–63. https://doi.org/10.1016/j.tre.2014.05.011.

    Article  Google Scholar 

  4. Duval DT. Critical issues in air transport and tourism. Tour Geogr. 2013;15(3):494–510. https://doi.org/10.1080/14616688.2012.675581.

    Article  Google Scholar 

  5. Greer F, Rakas J, Horvath A. Airports and environmental sustainability: a comprehensive review. Environ Res Lett. 2020;15(10):1–24. https://doi.org/10.1088/1748-9326/abb42a.

    Article  CAS  Google Scholar 

  6. Herndon SC, Jayne JT, Lobo P, Onasch TB, Fleming G, Hagen DE, Whitefield PD, Miake-Lye RC. Commercial aircraft engine emissions characterization of in-use aircraft at Hartsfield-Jackson Atlanta International Airport. Environ Sci Technol. 2008;42(6):1877–83. https://doi.org/10.1021/es072029+.

    Article  CAS  PubMed  Google Scholar 

  7. Antoine NE, Kroo IM. Aircraft optimization for minimal environmental impact. J Aircr. 2004;41(4):790–7. https://doi.org/10.2514/1.71.

    Article  Google Scholar 

  8. Turgut ET, Acikel G, Gaga EO, Calisir D, Odabasi M, Ari A, Artun G, Ilhan SO, Savaci U, Can E, Turan S. A comprehensive characterization of particulate matter, trace elements, and gaseous emissions of piston-engine aircraft. Environ Sci Technol. 2020;54(13):7818–35. https://doi.org/10.1021/acs.est.0c00815.

    Article  CAS  PubMed  Google Scholar 

  9. Masiol M, Harrison RM. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: a review. Atmos Environ. 2014;95:409–55. https://doi.org/10.1016/j.atmosenv.2014.05.070.

    Article  CAS  Google Scholar 

  10. Barrett SRH, Britter RE, Waitz IA. Global mortality attributable to aircraft cruise emissions. Environ Sci Technol. 2010;44(19):7736–42. https://doi.org/10.1021/es101325r.

    Article  CAS  PubMed  Google Scholar 

  11. Ekici S. Investigating routes performance of flight profile generated based on the off-design point: elaboration of commercial aircraft-engine pairing. Energy. 2020;193(116804):1–17. https://doi.org/10.1016/j.energy.2019.116804.

    Article  Google Scholar 

  12. Ekici S. Thermodynamic mapping of A321-200 in terms of performance parameters, sustainability indicators and thermo-ecological performance at various flight phases. Energy. 2020;202(117692):1–10. https://doi.org/10.1016/j.energy.2020.117692.

    Article  Google Scholar 

  13. Sun M, Tian Y, Zhang Y, Nadeem M, Xu C. Environmental impact and external costs associated with hub-and-spoke network in air transport. Sustainability. 2021;13(2):1–21. https://doi.org/10.3390/su13020465.

    Article  CAS  Google Scholar 

  14. Keivanpour S, Kadi DA. A sustainable approach to aircraft engine maintenance. IFAC-PapersOnLine. 2015;48(3):977–82. https://doi.org/10.1016/j.ifacol.2015.06.210.

    Article  Google Scholar 

  15. Upham P, Thomas C, Gillingwater D, Raper D. Environmental capacity and airport operations: current issues and future prospects. J Air Transp Manag. 2003;9(3):145–51. https://doi.org/10.1016/S0969-6997(02)00078-9.

    Article  Google Scholar 

  16. Moolchandani K, Agusdinata DB, Mane M, DeLaurentis D, Crossley W. Assessment of the effect of aircraft technological advancement on aviation environmental impacts. In: 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. Grapevine: American Institute of Aeronautics and Astronautics; 2013.

  17. Agarwal R. Recent advances in aircraft technology. InTech; 2012.

  18. Brunelle-Yeung E, Masek T, Rojo JJ, Levy JI, Arunachalam S, Miller SM, Barret SRH, Kuhn SR, Waitz IA. Assessing the impact of aviation environmental policies on public health. Transp Policy. 2014;34:21–8. https://doi.org/10.1016/j.tranpol.2014.02.015.

    Article  Google Scholar 

  19. Hansell AL, Blangiardo M, Fortunato L, Floud S, de Hoogh K, Fecht D, Ghosh RE, Laszlo HE, Pearson C, Beale L, Beevers S, Gulliver J, Best N, Richardson S, Elliott P. Aircraft noise and cardiovascular disease near Heathrow airport in London: small area study. BMJ (Clin Res Ed). 2013;347:f5432. https://doi.org/10.1136/bmj.f5432.

    Article  Google Scholar 

  20. Wing SE, Larson TV, Hudda N, Boonyarattaphan S, Fruin S, Ritz B. Preterm birth among infants exposed to in utero ultrafine particles from aircraft emissions. Environ Health Perspect. 2020;128(4):47002. https://doi.org/10.1289/EHP5732.

    Article  CAS  PubMed  Google Scholar 

  21. Yim SHL, Lee GL, Lee IH, Allroggen F, Ashok A, Caiazzo F, Eastham SD, Malina R, Barrett SRH. Global, regional and local health impacts of civil aviation emissions. Environ Res Lett. 2015;10(3):1–12. https://doi.org/10.1088/1748-9326/10/3/034001.

    Article  CAS  Google Scholar 

  22. Dobson AP. Globalization and regional integration. The origins, development and impact of the single European aviation market. Routledge studies in the modern world economy, vol. 68. London: Routledge/Taylor & Francis Group; 2014.

    Google Scholar 

  23. Button K, Taylor S. International air transportation and economic development. J Air Transp Manag. 2000;6(4):209–22. https://doi.org/10.1016/S0969-6997(00)00015-6.

    Article  Google Scholar 

  24. Cowper-Smith A, de Grosbois D. The adoption of corporate social responsibility practices in the airline industry. J Sustain Tour. 2011;19(1):59–77. https://doi.org/10.1080/09669582.2010.498918.

    Article  Google Scholar 

  25. Cengel YA, Boles MA. Thermodynamics. An engineering approach. McGraw-Hill series in mechanical engineering. 6th ed. Boston: McGraw-Hill Higher Education; 2007.

    Google Scholar 

  26. Walsh PP, Fletcher P. Gas turbine performance. 2nd ed. Malden: Blackwell Science; 2008.

    Google Scholar 

  27. Ekici S, Yalin G, Altuntas O, Karakoc TH. Calculation of HC, CO and NOx from civil aviation in Turkey in 2012. Int J Environ Pollut. 2013;53(3/4):232–44. https://doi.org/10.1504/IJEP.2013.059919.

    Article  CAS  Google Scholar 

  28. Caliskan H. Energy, exergy, thermoeconomic and sustainability analyses of a building heating system with a combi-boiler. Int J Exergy. 2014;14(2):244–73. https://doi.org/10.1504/IJEX.2014.060282.

    Article  Google Scholar 

  29. Caliskan H. Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors. Renew Sustain Energy Rev. 2017;69:488–92. https://doi.org/10.1016/j.rser.2016.11.203.

    Article  Google Scholar 

  30. Ekici S, Altuntas O, Acikkalp E, Sogut MZ, Karakoc TH. Assessment of thermodynamic performance and exergetic sustainability of turboprop engine using mixture of kerosene and methanol. Int J Exergy. 2016;19(3):295–314. https://doi.org/10.1504/IJEX.2016.075666.

    Article  Google Scholar 

  31. Caliskan H, Mori K. Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems. Energy. 2017;128:128–44. https://doi.org/10.1016/j.energy.2017.04.014.

    Article  CAS  Google Scholar 

  32. Caglayan H, Caliskan H. Energy, exergy and sustainability assessments of a cogeneration system for ceramic industry. Appl Therm Eng. 2018;136:504–15. https://doi.org/10.1016/j.applthermaleng.2018.02.064.

    Article  Google Scholar 

  33. Garbett NC, Chaires JB. Thermodynamic studies for drug design and screening. Expert Opin Drug Discov. 2012;7(4):299–314. https://doi.org/10.1517/17460441.2012.666235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hammond GP. Industrial energy analysis, thermodynamics and sustainability. Appl Energy. 2007;84(7–8):675–700. https://doi.org/10.1016/j.apenergy.2007.01.002.

    Article  Google Scholar 

  35. Yildiz I, Caliskan H, Mori K. Energy, exergy and environmental assessments of biodiesel and diesel fuels for an internal combustion engine using silicon carbide particulate filter. J Therm Anal Calorim. 2021;145:739–50. https://doi.org/10.1007/s10973-020-10143-w.

    Article  CAS  Google Scholar 

  36. Caglayan H, Caliskan H. Thermodynamic based economic and environmental analyses of an industrial cogeneration system. Appl Therm Eng. 2019;158(113792):1–9. https://doi.org/10.1016/j.applthermaleng.2019.113792.

    Article  Google Scholar 

  37. Sohret Y, Ekici S, Altuntas O, Hepbasli A, Karakoc TH. Exergy as a useful tool for the performance assessment of aircraft gas turbine engines: a key review. Prog Aerosp Sci. 2016;83:57–69. https://doi.org/10.1016/j.paerosci.2016.03.001.

    Article  Google Scholar 

  38. Dinc A, Sohret Y, Ekici S. Exergy analysis of a three-spool turboprop engine during the flight of a cargo aircraft. Aircr Eng Aerosp Technol. 2020;92(10):1495–503.

    Article  Google Scholar 

  39. Aygun H, Kirmizi M, Turan O. Propeller effects on energy, exergy and sustainability parameters of a small turboprop engine. Energy. 2022;249(123759):1–12.

    Google Scholar 

  40. Balli O, Caliskan H. On-design and off-design operation performance assessments of an aero turboprop engine used on Unmanned Aerial Vehicles (UAVs) in terms of aviation, thermodynamic, environmental and sustainability perspectives. Energy Convers Manag. 2021;243(114403):1–13. https://doi.org/10.1016/j.enconman.2021.114403.

    Article  Google Scholar 

  41. Aygun H. Thermodynamic, environmental and sustainability calculations of a conceptual turboshaft engine under several power settings. Energy. 2022;245(123251):1–11.

    Google Scholar 

  42. Balli O, Aygun H, Turan O. Enhanced dynamic exergy analysis of a micro-jet (μ-jet) engine at various modes. Energy. 2022;239(A):1–22.

    Google Scholar 

  43. Aygun H, Turan O. Environmental impact of an aircraft engine with exergo-life cycle assessment on dynamic flight. J Clean Prod. 2021;279(123729):1–14.

    Google Scholar 

  44. Balli O, Caliskan H. Energy, exergy, environmental and sustainability assessments of jet and hydrogen fueled military turbojet engine. Int J Hydrog Energy. 2022. https://doi.org/10.1016/j.ijhydene.2022.04.180.

    Article  Google Scholar 

  45. Akdeniz HY, Balli O, Caliskan H. Energy, exergy, economic, environmental, energy based economic, exergoeconomic and enviroeconomic (7E) analyses of a jet fueled turbofan type of aircraft engine. Fuel. 2022;322(124165):1–22. https://doi.org/10.1016/j.fuel.2022.124165.

    Article  CAS  Google Scholar 

  46. Sohret Y, Caliskan H. Thermodynamic-based analyses and assessments of a new-generation turbojet engine used for unmanned aerial vehicles (UAVs). J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11330-7.

    Article  Google Scholar 

  47. Aygun H, Caliskan H. Environmental and enviroeconomic analyses of two different turbofan engine families considering landing and take-off (LTO) cycle and global warming potential (GWP) approach. Energy Convers Manag. 2021;248(114797):1–12. https://doi.org/10.1016/j.enconman.2021.114797.

    Article  CAS  Google Scholar 

  48. Balli O, Caliskan H. Turbofan engine performances from aviation, thermodynamic and environmental perspectives. Energy. 2021;232(121031):1–14. https://doi.org/10.1016/j.energy.2021.121031.

    Article  Google Scholar 

  49. Sohret Y, Ekici S, Karakoc TH. Using exergy for performance evaluation of a conceptual ramjet engine burning hydrogen fuel. Int J Hydrog Energy. 2018;43(23):10842–7. https://doi.org/10.1016/j.ijhydene.2017.12.060.

    Article  CAS  Google Scholar 

  50. Ekici S, Sohret Y, Coban K, Altuntas O, Karakoc TH. Performance evaluation of an experimental turbojet engine. Int J Turbo Jet-Engines. 2017. https://doi.org/10.1515/tjj-2016-0016.

    Article  Google Scholar 

  51. Ekici S, Sohret Y, Coban K, Altuntas O, Karakoc TH. Sustainability metrics of a small scale turbojet engine. Int J Turbo Jet-Engines. 2018;35(2):113–9. https://doi.org/10.1515/tjj-2016-0036.

    Article  Google Scholar 

  52. EASA. Type-certificate data sheet for airbus A400M; 2013.

  53. EASA. Type-certificate data sheet for TP400-D6 engine; 2021.

  54. Meiriño AA. OCCAR pocket guide 2018; 2018.

  55. Airbus. The pocket guide to A400M. The versatile airlifter; 2008.

  56. Raymer D. Aircraft design: a conceptual approach. 6th ed. Washington: American Institute of Aeronautics and Astronautics, Inc; 2018. https://doi.org/10.2514/4.104909.

    Book  Google Scholar 

  57. Walsh PP, Fletcher P. Gas turbine performance. 2nd ed. Hoboken: Blackwell Science; 2004.

    Book  Google Scholar 

  58. Aydin H. Exergetic sustainability analysis of LM6000 gas turbine power plant with steam cycle. Energy. 2013;57:766–74.

    Article  Google Scholar 

  59. Turgut ET, Karakoc TH, Hepbasli A, Rosen MA. Exergy analysis of a turbofan aircraft engine. Int J Exergy. 2009;6(2):181–99.

    Article  CAS  Google Scholar 

  60. Aydin H, Turan O, Karakoc TH, Midilli A. Component–based exergetic measures of an experimental turboprop/turboshaft engine for propeller aircrafts and helicopters. Int J Exergy. 2012;11(3):322–48.

    Article  Google Scholar 

  61. Aydin H, Turan O, Karakoc TH, Midilli A. Exergetic sustainability indicators as a tool in commercial aircraft: a case study for a turbofan engine. Int J Green Energy. 2015;12(1):28–40.

    Article  CAS  Google Scholar 

  62. Turan O, Aydın H. Numerical calculation of energy and exergy flows of a turboshaft engine for power generation and helicopter applications. Energy. 2016;115:914–23.

    Article  Google Scholar 

  63. Balli O, Aras H, Aras N, Hepbasli A. Exergetic and exergoeconomic analysis of an Aircraft Jet Engine (AJE). Int J Exergy. 2008;5(5):567–81.

    Article  Google Scholar 

  64. Balli O. Exergy modeling for evaluating sustainability level of a high by-pass turbofan engine used on commercial aircrafts. Appl Therm Eng. 2017;123:138–55.

    Article  Google Scholar 

  65. Tuzcu H, Sohret Y, Caliskan H. Energy, environment and enviroeconomic analyses and assessments of the turbofan engine used in aviation industry. Environ Prog Sustain Energy. 2021;40(3):1–8.

    Article  Google Scholar 

  66. Caliskan H. Novel approaches to exergy and economy based enhanced environmental analyses for energy systems. Energy Convers Manag. 2015;89:156–61.

    Article  Google Scholar 

  67. Kim BY, Fleming G, Balasubramanian S, Malwitz A, Lee J, Waitz I, Klima K, Locke M, Holsclaw C, Morales A, McQueen E, Gillette W. System for assessing Aviation’s Global Emissions (SAGE), version 1.5. Global aviation emissions inventories for 2000 through 2004. Federal Aviation Administration, Office of Environment and Energy; 2005. Available from: https://www.faa.gov/about/office_org/headquarters_offices/apl/research/models/sage/media/FAA-EE-2005-02__SAGE-Inventory_Report-Text.pdf. Access: 01 March 2021.

  68. Air Traffic. Emission inventory guidebook—activities 080501–080504. December 2001 B851. Available from: https://www.eea.europa.eu/ds_resolveuid/1QP4SZ85H3. Access: 01 March 2021.

  69. Turgut ET, Rosen MA. Assessment of emissions at busy airports. Int J Energy Res. 2010;34:800–14. https://doi.org/10.1002/er.1601.

    Article  CAS  Google Scholar 

  70. Ecocostsvalue. The eco-costs of energy. TU Delft-Delfth University of Technology. https://www.ecocostsvalue.com/eco-costs/eco-costs-energy/#av_section_2 . Access: 01 March 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan Caliskan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinc, A., Caliskan, H., Ekici, S. et al. Thermodynamic-based environmental and enviroeconomic assessments of a turboprop engine used for freight aircrafts under different flight phases. J Therm Anal Calorim 147, 12693–12707 (2022). https://doi.org/10.1007/s10973-022-11486-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11486-2

Keywords

Navigation