Skip to main content
Log in

Improvement in hygroscopic property of macro-defect free cement modified with hypromellose/potassium methyl siliconate copolymer and pulverized fly ash

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Macro-defect-free (MDF) cement composites are high-strength materials produced by applying high shear to cement-polymer pastes, using twin roller mill under moderate pressure and temperature. However, sensitivity toward moisture, specifically degradation of strength on water exposure, is a serious problem associated with MDF cement composites. To address this issue, a novel formulation of Portland cement-based MDF cement composites with addition of potassium methyl siliconate (PMS)–hydroxypropyl methylcellulose (HPMC) copolymer and pulverized fly ash (PFA) is presented. The experimental program involves preparation of first, HPMC/PMS copolymer using magnetic stirrer and then mixing it with cement and PFA to make MDF composites. PMS proportion varies from 0 to 4% in steps of 1%, while 30% PFA was added as cement replacement. Control mix contained 100% cement without PFA and PMS polymer. MDF composite sheets were prepared through twin roller mill and then characterized using FTIR, TGA/DTG and SEM. Flexural strength of MDF composites sheets were estimated by three-point loading test with 1 mm min−1. loading ramp. Results revealed that PFA/PMS addition have beneficial effects on the flexural strength, temperature and water resistance characteristics of MDF cement composites. FTIR spectroscopy showed the formation of new peaks related to Si–O–Si and Si–CH3 stretching. PFA/PMS-based MDF composite specimen showed comparatively higher quantity of calcium silicate hydrate gel and lower calcium hydroxide content which resulted in denser microstructure. Inclusion of 30% PFA and 3% PMS in MDF cement matrix produced composites with 52% improved flexural strength and 80.3% water resistant properties as compared to reference MDF mix at 28 days.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

OPC:

Ordinary Portland cement

PFA:

Pulverized fly ash

PMS:

Potassium methyl siliconate

HPMC:

Hydroxy propyl methyl cellulose

PVA:

Polyvinyl alcohol

CAC:

Calcium aluminate cement

C3S:

Tricalcium silicate/alite

C2S:

Dicalcium silicate/belite

C3A:

Tricalcium aluminate

C-S-H:

Calcium silicate hydrate

FTIR:

Fourier transform infrared spectroscopy

TGA/DTG:

Thermogravimetric/Differential thermo-gravimetric

XRD:

X-ray diffraction

SEM:

Scanning electron microscopy

References

  1. Tomar P, Lakhani R, Chhibber VK, Kumar R. Macro-defect free cements: a future oriented polymer composite materials for construction industries. Compos Interfaces. 2018;25(5–7):607–27. https://doi.org/10.1080/09276440.2018.1439637.

    Article  CAS  Google Scholar 

  2. Desai PG, Lewis JA, Beintz DP. Unreacted cement content in macro-defect-free composites: impact on processing-structure-property relations. J Mater Sci. 1994;29(24):6445–52. https://doi.org/10.1007/BF00354002.

    Article  Google Scholar 

  3. Ekincioğlu O, Özkul MH, Struble LJ, Patachia S. State of the art of macro-defect-free composites. J Mater Sci. 2018;53(15):10595–616. https://doi.org/10.1007/s10853-018-2328-y.

    Article  CAS  Google Scholar 

  4. Chandrashekhar GV, Cooper VI, Shafer MW. Dielectric properties of macro-defect-free (MDF) cements. J Mater Sci. 1989;24(9):3356–60. https://doi.org/10.1007/BF01139065.

    Article  CAS  Google Scholar 

  5. Dell’Aversano R, D’Amore A. Tailoring the properties of calcium aluminate macro-defect-free cements: from brittle to ductile behavior. J Mater Eng Perform. 2019;28(11):7068–74. https://doi.org/10.1007/s11665-019-04430-3.

    Article  CAS  Google Scholar 

  6. Kalina L, Matoušek D, Šoukal F. Utilization of XPS analysis for the characterization of mechanochemical activation in polymer-cement composite materials. Adv Mater Res. 2014;1000:231–4. https://doi.org/10.4028/www.scientific.net/AMR.1000.231.

    Article  Google Scholar 

  7. Drabik M, Slade RC. Macro defect-free materials: modification of interfaces in cement composites by polymer grafting. Interface Sci. 2004;12(4):375–9. https://doi.org/10.1023/B:INTS.0000042335.65518.11.

    Article  CAS  Google Scholar 

  8. Alfani R, Colombet P, D’amore A, Rizzo N, Nicolais L. Effect of temperature on thermo-mechanical properties of macro-defect-free cement-polymer composite. J Mater Sci. 1999;34(23):5683–7. https://doi.org/10.1023/A:1004701529490.

    Article  CAS  Google Scholar 

  9. Wu Q, Zhu Z, Li S, Wang S, Chen B. Effect of polyacrylic ester emulsion on mechanical properties of macro-defect free desulphurization gypsum plaster. Constr Build Mater. 2017;153:656–62. https://doi.org/10.1016/j.conbuildmat.2017.07.109.

    Article  CAS  Google Scholar 

  10. Drabik M, Billik P, Galikova L. Macro defect free materials; the challenge of mechanochemical activation. Ceram-Silik. 2012;56(4):396–401.

    CAS  Google Scholar 

  11. Bortzmeyer D, Frouin L, Montardi Y, Orange G. Microstructure and mechanical properties of macrodefect-free cements. J Mater Sci. 1995;30(16):4138–44. https://doi.org/10.1007/BF00360721.

    Article  CAS  Google Scholar 

  12. Chandrashekhar GV, Shafer MV. Polymer impregnation of macro-defect-free cements. J Mater Sci. 1989;24(9):3353–5. https://doi.org/10.1007/BF01139064.

    Article  CAS  Google Scholar 

  13. Chu TJ, Robertson RE. Viscoelastic behaviour of macro-defect-free cement. J Mater Sci. 1994;29(10):2683–90. https://doi.org/10.1007/BF00356818.

    Article  CAS  Google Scholar 

  14. Igarashi H, Takahashi T. The influence of moisture on the expansion of macro-defect-free cements. MRS Online Proc Libr. 1991;245(1):173–8. https://doi.org/10.1557/PROC-245-173.

    Article  Google Scholar 

  15. Donatello S, Tyrer M, Cheeseman CR. Recent developments in macro-defect-free (MDF) cements. Constr Build Mater. 2009;23(5):1761–7. https://doi.org/10.1016/j.conbuildmat.2008.09.001.

    Article  Google Scholar 

  16. Lewis JA, Boyer MA. Effects of an organotitanate cross-linking additive on the processing and properties of macro-defect-free cement. Adv Cem Based Mater. 1995;2(1):2–7. https://doi.org/10.1016/1065-7355(95)90033-0.

    Article  CAS  Google Scholar 

  17. Mojumdar SC, Mazanec K, Drabik M. Macro-defect-free (MDF) cements. J Therm Anal Calorim. 2006;83(1):135–9. https://doi.org/10.1007/s10973-005-7045-5.

    Article  CAS  Google Scholar 

  18. Ekincioglu O, Ozkul MH, Struble LJ, Patachia S. Optimization of material characteristics of macro-defect free cement. Cem Concr Compos. 2012;34(4):556–65. https://doi.org/10.1016/j.cemconcomp.2011.11.003.

    Article  CAS  Google Scholar 

  19. Wang Z, Huang Z, Yang T. Silica coated expanded polystyrene/cement composites with improved fire resistance, smoke suppression and mechanical strength. Mater Chem Phys. 2020;240: 122190. https://doi.org/10.1016/j.matchemphys.2019.122190.

    Article  CAS  Google Scholar 

  20. Vanin DVF, Andrade VD, Fiorentin TA, Recouvreux DDOS, Carminatti CA, Al-Qureshi HA. Cement pastes modified by cellulose nanocrystals: a dynamic moduli evolution assessment by the Impulse Excitation Technique. Mater Chem Phys. 2020;239: 122038. https://doi.org/10.1016/j.matchemphys.2019.122038.

    Article  CAS  Google Scholar 

  21. Zanfir AV, Nenu N, Voicu G, Badanoiu AI, Ghitulica CD, Iordache F. Modified calcium silicophosphate cements with improved properties. Mater Chem Phys. 2019;238: 121965. https://doi.org/10.1016/j.matchemphys.2019.121965.

    Article  CAS  Google Scholar 

  22. Luan X, Li J, Yang Z. Effects of attapulgite addition on the mechanical behavior and porosity of cement-based porous materials and its adsorption capacity. Mater Chem Phys. 2020;239: 121962. https://doi.org/10.1016/j.matchemphys.2019.121962.

    Article  CAS  Google Scholar 

  23. Cavusoglu I, Yilmaz E, Yilmaz AO. Sodium silicate effect on setting properties, strength behavior and microstructure of cemented coal fly ash backfill. Powder Technol. 2021;384:17–28. https://doi.org/10.1016/j.powtec.2021.02.013.

    Article  CAS  Google Scholar 

  24. Jiang G, Xuan Y, Li Y, Ma M. Inhibitive effect of potassium methyl siliconates on hydrated swelling of montmorillonite. M Chem Xpress. 2013;2(4):181–9.

    CAS  Google Scholar 

  25. Zhu YG, Kou SC, Poon CS, Dai JG, Li QY. Influence of silane-based water repellent on the durability properties of recycled aggregate concrete. Cem Concr Compos. 2013;35(1):32–8. https://doi.org/10.1016/j.cemconcomp.2012.08.008.

    Article  CAS  Google Scholar 

  26. Kong XM, Liu H, Lu ZB, Wang DM. The influence of silanes on hydration and strength development of cementitious systems. Cem Concr Res. 2015;67:168–78. https://doi.org/10.1016/j.cemconres.2014.10.008.

    Article  CAS  Google Scholar 

  27. IS: 8112. Ordinary Portland cement, 43 grade-specification. New Delhi: Bureau of Indian Standards; 2013.

    Google Scholar 

  28. ASTm c618-19. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. West Conshohocken: ASTM International; 2019.

    Google Scholar 

  29. Li S, Zhang S, Wang X. Fabrication of superhydrophobic cellulose-based materials through a solution-immersion process. Langmuir. 2008;24(10):5585–90. https://doi.org/10.1021/la800157t.

    Article  CAS  PubMed  Google Scholar 

  30. Wang L, Dong W, Xu Y. Synthesis and characterization of hydroxypropyl methylcellulose and ethyl acrylate graft copolymers. Carbohydr Polym. 2007;68(4):626–36. https://doi.org/10.1016/j.carbpol.2006.07.031.

    Article  CAS  Google Scholar 

  31. Das R, Panda AB, Pal S. Synthesis and characterization of a novel polymeric hydrogel based on hydroxypropyl methyl cellulose grafted with polyacrylamide. Cellulose. 2012;19(3):933–45. https://doi.org/10.1007/s10570-012-9692-6.

    Article  CAS  Google Scholar 

  32. ASTM D570-98. Standard test method for water absorption of plastics. West Conshohocken: ASTM International; 2018.

    Google Scholar 

  33. Piao C, Cai Z, Stark NM, Monlezun CJ. Potassium methyl siliconatetreated pulp fibers and their effects on wood plastic composites: water sorption and dimensional stability. J Appl Polym Sci. 2013;129(1):193–201. https://doi.org/10.1002/app.38736.

    Article  CAS  Google Scholar 

  34. Falchi L, Zendri E, Müller U, Fontana P. The influence of water-repellent admixtures on the behaviour and the effectiveness of Portland limestone cement mortars. Cem Concr Compos. 2015;59:107–18. https://doi.org/10.1016/j.cemconcomp.2015.02.004.

    Article  CAS  Google Scholar 

  35. Zhang P, Shang H, Hou D, Guo S, Zhao T. The effect of water repellent surface impregnation on durability of cement-based materials. Adv Mater Sci Eng. 2017. https://doi.org/10.1155/2017/8260103.

    Article  Google Scholar 

  36. Koohestani B. Effect of saline admixtures on mechanical and microstructural properties of cementitious matrices containing tailings. Constr Build Mater. 2017;156:1019–27. https://doi.org/10.1016/j.conbuildmat.2017.09.048.

    Article  CAS  Google Scholar 

  37. Falchi L, Müller U, Fontana P, Izzo FC, Zendri E. Influence and effectiveness of water-repellent admixtures on pozzolana–lime mortars for restoration application. Constr Build Mater. 2013;49:272–80. https://doi.org/10.1016/j.conbuildmat.2013.08.030.

    Article  CAS  Google Scholar 

  38. Wu Y, Sun Q, Fang H, Ren W, Liu F. Surface-treated polypropylene fiber for reinforced repair mortar cementitious composites. Compos Interfaces. 2014;21(9):787–96. https://doi.org/10.1080/15685543.2014.960320.

    Article  CAS  Google Scholar 

  39. Yazıcı DT, Çetinkaya H. Evaluation of boron industrial solid waste in composite materials. Compos Interfaces. 2018;25(1):13–25. https://doi.org/10.1080/09276440.2017.1319668.

    Article  CAS  Google Scholar 

  40. Wang J, Liu E, Li L. Characterization on the recycling of waste seashells with Portland cement towards sustainable cementitious materials. J Clean Prod. 2019;220:235–52. https://doi.org/10.1016/j.jclepro.2019.02.122.

    Article  CAS  Google Scholar 

  41. Nguyen HA, Chang TP, Chen CT, Yang TR, Nguyen TD. Physical-chemical characteristics of an eco-friendly binder using ternary mixture of industrial wastes. Mater Constr. 2015;65(319):e064. https://doi.org/10.3989/mc.2015.07414.

    Article  CAS  Google Scholar 

  42. Argiz C, Menéndez E, Sanjuán MA. Effect of mixes made of coal bottom ash and fly ash on the mechanical strength and porosity of Portland cement. Mater Constr. 2013;63(309):49–64. https://doi.org/10.3989/mc.2013.03911.

    Article  CAS  Google Scholar 

  43. Raza A, Ali B, Haq FU, Awais M, Jameel MS. Influence of fly ash, glass fibers and wastewater on production of recycled aggregate concrete. Mater Constr. 2021;72(343):253. https://doi.org/10.3989/mc.2021.15120.

    Article  CAS  Google Scholar 

  44. Kumar R. Effects of high volume dolomite sludge on the properties of eco-efficient lightweight concrete: microstructure, statistical modeling, multi-attribute optimization through derringer’s desirability function, and life cycle assessment. J Clean Prod. 2021;307: 127107. https://doi.org/10.1016/j.jclepro.2021.127107.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Director, CSIR-Central Building Research Institute, Roorkee, for granting the permission to publish this research work. The support from the Department of Science and Technology, New Delhi (under Grant No: DST/Disha/SoRF/PM/019) and Uttarakhand Technical University, Dehradun are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: PT, RK. Data curation: PT, RK. Formal analysis and Resources: PT, RK, RL, VKC. Supervision: RL, VKC. Investigation: PT, RK. Funding acquisition: PT, RK. Methodology: PT, RK. Validation: PT, RK, AS. Writing—original draft preparation: PT, RK. Writing—review and editing: PT, RK, AS.

Corresponding author

Correspondence to Rajesh Kumar.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest or competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomar, P., Kumar, R., Lakhani, R. et al. Improvement in hygroscopic property of macro-defect free cement modified with hypromellose/potassium methyl siliconate copolymer and pulverized fly ash. J Therm Anal Calorim 147, 12417–12430 (2022). https://doi.org/10.1007/s10973-022-11447-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11447-9

Keywords

Navigation