Skip to main content
Log in

Thermal and alkali modification of kaolin for potential utilization as filler material in fiber-reinforced polylactic acid composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Agricultural fiber-reinforced PLA composites have gained significant attention in recent times. However, they have low thermal stability, high moisture uptake and inferior mechanical properties, which limit their use for different applications. Use of clay as filler in agricultural fiber-reinforced PLA composites can overcome these challenges. This paper presents thermal, physical and chemical properties of kaolin from Buwambo deposits in Uganda before and after alkali modification with NaOH and Mg(OH)2. Alkali modification involved treating raw clay with different concentrations of alkali (1, 2, 4%) at different soaking times (1 h, 3.5 h) and liquor ratios (20:1, 5:1). Modified and unmodified clay samples were analyzed by SEM, Ultimate analysis, FTIR, TGA, XRF and Loss on Ignition. Physical properties for unmodified kaolin were 3.9 ± 0.0% (moisture), 6.8 ± 0.1% (volatile) and 89.3 ± 0.3% (ash). SEM analysis disclosed that alkali pre-treatment of kaolin improved its micro-structure. The FTIR spectra showed that the main functional groups were Al–OH, Al-O and Si–O. DTG results showed two main peaks related to maximum mass loss during kaolin combustion. Peak temperature of unmodified clay (660.2 °C) increased with increasing residence time and liquor ratio during alkali pre-treatment. Burning of kaolin above peak temperatures produces metakaolin which enhances creation of ash residues that signify increasing thermal stability. The properties of kaolin used in this study indicate its suitability for use as fillers in fiber-reinforced PLA composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Matusik J, Stodolak E, Bahranowski K. Synthesis of polylactide/clay composites using structurally different kaolinites and kaolinite nanotubes. Appl Clay Sci. 2011;51(1–2):102–9.

    Article  CAS  Google Scholar 

  2. Ochoa DRH, Rojas-Vargas JA, Costa Y. Characterization of NaOH-treated Colombian silverskin coffee fiber as a composite reinforcement. BioResources. 2017;12(4):8803–12.

    CAS  Google Scholar 

  3. Yiga VA, Lubwama M, Pagel S, Benz J, Olupot PW, Bonten C. Flame retardancy and thermal stability of agricultural residue fiber-reinforced polylactic acid: A Review. Polym Compos. 2021;42(1):15–44.

    Article  CAS  Google Scholar 

  4. Norkhairunnisa M, Majid DL. A Review on Thermal Performance of Hybrid Natural Fiber/Nanoclay Polymer Composites. In Nanoclay Reinforced Polymer Composites (pp. 151–174). Springer, Singapore, 2016.

  5. Yin W, Chen L, Lu F, Song P, Dai J, Meng L. Mechanically robust, flame-retardant poly (lactic acid) biocomposites via combining cellulose nanofibers and ammonium polyphosphate. ACS Omega. 2018;3(5):5615–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pan H, Wang X, Jia S, Lu Z, Bian J, Yang H, Lan H, Zhang H. Fiber-induced crystallization in polymer composites: a comparative study on poly (lactic acid) composites filled with basalt fiber and fiber powder. Int J Biol Macromol. 2021;183:45–54.

    Article  CAS  PubMed  Google Scholar 

  7. Jeyakumar R, Sampath PS, Ramamoorthi R, Ramakrishnan T. Structural, morphological and mechanical behaviour of glass fibre reinforced epoxy nanoclay composites. Int J Adv Manufact Technol. 2017;93(1):527–35.

    Article  Google Scholar 

  8. Faris AH (2021) Fillers in Wood Adhesives. In Fillers. IntechOpen.

  9. Chen RS, Ahmad S. Mechanical performance and flame retardancy of rice husk/organoclay-reinforced blend of recycled plastics. Mater Chem Phys. 2017;198:57–65.

    Article  CAS  Google Scholar 

  10. Segura JCF, Cruz VER, Bueno JDJP, Ascencio EML, García FL. Characterization and electrochemical treatment of a kaolin. Appl Clay Sci. 2017;146:264–9.

    Article  CAS  Google Scholar 

  11. Ptáček P, Kubátová D, Havlica J, Brandštetr J, Šoukal F, Opravil T. Isothermal kinetic analysis of the thermal decomposition of kaolinite: the thermogravimetric study. Thermochim Acta. 2010;501(1–2):24–9.

    Article  CAS  Google Scholar 

  12. Ibrahim N, Jollands M, Parthasarathy R. Morphology and mechanical properties of polylactide/montmorillonite composites. J Phys Conf Ser. 2019;1349(1):012048.

  13. Pan H, Cao Z, Chen Y, Wang X, Jia S, Yang H, Zhang H, Dong L. Effect of molecular stereoregularity on the transcrystallinization properties of poly (L-lactide)/basalt fiber composites. Int J Biol Macromol. 2019;137:238–46.

    Article  CAS  PubMed  Google Scholar 

  14. Hussin F, Aroua MK, Daud WMAW. Textural characteristics, surface chemistry and activation of bleaching earth: A review. Chem Eng J. 2011;170(1):90–106.

    Article  CAS  Google Scholar 

  15. Bai T, Zhu B, Liu H, Wang Y, Song G, Liu C, Shen C. Biodegradable poly (lactic acid) nanocomposites reinforced and toughened by carbon nanotubes/clay hybrids. Int J Biol Macromol. 2020;151:628–34.

    Article  CAS  PubMed  Google Scholar 

  16. Ramesh P, Prasad BD, Narayana KL.Effect of MMT Clay on mechanical, thermal and barrier properties of treated aloevera fiber/PLA-hybrid biocomposites. Silicon. 2019;1–10.

  17. Trifol J, Plackett D, Sillard C, Hassager O, Daugaard AE, Bras J, Szabo P. A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high‐performance polylactide nanocomposites. J Appl Polymer Sci. 2016;133(14).

  18. Sajna VP, Mohanty S, Nayak SK. Hybrid green nanocomposites of poly (lactic acid) reinforced with banana fibre and nanoclay. J Reinf Plast Compos. 2014;33(18):1717–32.

    Article  CAS  Google Scholar 

  19. Kaiser MR, Anuar HB, Samat NB, Razak SBA. Effect of processing routes on the mechanical, thermal and morphological properties of PLA-based hybrid biocomposite. Iran Polym J. 2013;22(2):123–31.

    Article  CAS  Google Scholar 

  20. Meng QK, Hetzer M, De Kee D. PLA/clay/wood nanocomposites: nanoclay effects on mechanical and thermal properties. J Compos Mater. 2011;45(10):1145–58.

    Article  CAS  Google Scholar 

  21. Zlatanović S, Ostojić S, Micić D, Rankov S, Dodevska M, Vukosavljević P, Gorjanović S. Thermal behaviour and degradation kinetics of apple pomace flours. Thermochim Acta. 2019;673:17–25.

    Article  CAS  Google Scholar 

  22. Zhang L, Sun Z, Liang D, Lin J, Xiao W. Preparation and performance evaluation of PLA/coir fibre biocomposites. BioResources. 2017;12(4):7349–62.

    Google Scholar 

  23. Malucelli LC, Silvestre GF, Carneiro J, Vasconcelos EC, Guiotoku M, Maia CMBF, Carvalho Filho MAS. Biochar higher heating value estimative using thermogravimetric analysis. J Therm Anal Calorim. 2020;139(3):2215–20.

    Article  CAS  Google Scholar 

  24. Marsh A, Heath A, Patureau P, Evernden M, Walker P. Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals. Appl Clay Sci. 2018;166:250–61.

    Article  CAS  Google Scholar 

  25. Yiga VA, Lubwama M, Olupot PW. Investigation on char residues and mean reactivity of compression molded rice and coffee husks bio-char reinforced polypropylene. In ASTFE Digital Library: Begel House Inc.; 2020. https://doi.org/10.1615/TFEC2020.cbf.032093.

    Book  Google Scholar 

  26. Liu H, Jiaqiang E, Ma X, Xie C. Influence of microwave drying on the combustion characteristics of food waste. Drying Technol. 2016;34(12):1397–405.

    Article  Google Scholar 

  27. Song A, Zha F, Tang X, Chang Y. Effect of the additives on combustion characteristics and desulfurization performance of cow dung briquette. Chem Eng Process-Process Intensification. 2019;143: 107585.

    Article  CAS  Google Scholar 

  28. Kuan YH, Wu FH, Chen GB, Lin HT, Lin TH. Study of the combustion characteristics of sewage sludge pyrolysis oil, heavy fuel oil, and their blends. Energy. 2020;201: 117559.

    Article  CAS  Google Scholar 

  29. Kirabira JB, Jonsson S, Byaruhanga JK. Beneficiation and Evaluation of Mutaka kaolin. In Proceedings of Second International Conference on Advances in Engineering and Technology, December (pp. 20–21) (2011).

  30. Baalousha M, Manciulea A, Cumberland S, Kendall K, Lead JR. Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ Toxicol Chem Int J. 2008;27(9):1875–82.

    Article  CAS  Google Scholar 

  31. Khalifa AZ, Cizer Ö, Pontikes Y, Heath A, Patureau P, Bernal SA, Marsh AT. Advances in alkali-activation of clay minerals. Cem Concr Res. 2020;132: 106050.

    Article  CAS  Google Scholar 

  32. Gazulla MF, Rodrigo M, Orduña M, Gómez CM. Determination of carbon, hydrogen, nitrogen and sulfur in geological materials using elemental analysers. Geostand Geoanal Res. 2012;36(2):201–17.

    Article  CAS  Google Scholar 

  33. Lin Y, Munroe P, Joseph S, Ziolkowski A, Van Zwieten L, Kimber S, Rust J. Chemical and structural analysis of enhanced biochars: thermally treated mixtures of biochar, chicken litter, clay and minerals. Chemosphere. 2013;91(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  34. Liew YM, Heah CY, Kamarudin H. Structure and properties of clay-based geopolymer cements: A review. Prog Mater Sci. 2016;83:595–629.

    Article  CAS  Google Scholar 

  35. Belver C, Bañares Muñoz MA, Vicente MA. Chemical activation of a kaolinite under acid and alkaline conditions. Chem Mater. 2002;14(5):2033–43.

    Article  CAS  Google Scholar 

  36. Ryan PC, Huertas FJ, Hobbs FWC, Pincus LN. Kaolinite and halloysite derived from sequential transformation of pedogenic smectite and kaolinite-smectite in a 120-ka tropical soil chronosequence. Clays Clay Miner. 2016;64(5):639–67.

    Article  CAS  Google Scholar 

  37. David MK, Okoro UC, Akpomie KG, Okey C, Oluwasola HO. Thermal and hydrothermal alkaline modification of kaolin for the adsorptive removal of lead (II) ions from aqueous solution. SN Appl Sci. 2020;2:1–13.

    Google Scholar 

  38. Tchakouté HK, Melele SJ, Djamen AT, Kaze CR, Kamseu E, Nanseu CN, **Rüscher CH. Microstructural and mechanical properties of poly (sialate-siloxo) networks obtained using metakaolins from kaolin and halloysite as aluminosilicate sources: A comparative study. Appl Clay Sci. 2020;186: 105448.

    Article  CAS  Google Scholar 

  39. Biel O, Rożek P, Florek P, Mozgawa W, Król M. Alkaline activation of kaolin group minerals. Curr Comput-Aided Drug Des. 2020;10(4):268.

    CAS  Google Scholar 

  40. Fitos M, Badogiannis EG, Tsivilis SG, Perraki M. Pozzolanic activity of thermally and mechanically treated kaolins of hydrothermal origin. Appl Clay Sci. 2015;116:182–92.

    Article  CAS  Google Scholar 

  41. Lubwama M, Yiga VA, Muhairwe F, Kihedu J. Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources. Renew Energy. 2020;148:1002–16.

    Article  CAS  Google Scholar 

  42. Lubwama M, Yiga VA. Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda. Renew Energy. 2018;118:43–55.

    Article  CAS  Google Scholar 

  43. Ladhari A, Daly HB, Belhadjsalah H, Cole KC, Denault J. Investigation of water absorption in clay-reinforced polypropylene nanocomposites. Polym Degrad Stab. 2010;95(4):429–39.

    Article  CAS  Google Scholar 

  44. Castro-Aguirre E, Auras R, Selke S, Rubino M, Marsh T. Impact of nanoclays on the biodegradation of poly (lactic acid) nanocomposites. Polymers. 2018;10(2):202.

    Article  PubMed Central  CAS  Google Scholar 

  45. Chapple S, Anandjiwala R, Ray SS. Mechanical, thermal, and fire properties of polylactide/starch blend/clay composites. J Therm Anal Calorim. 2013;113(2):703–12.

    Article  CAS  Google Scholar 

  46. Yiga VA, Lubwama M. Thermogravimetric analysis of agricultural residue carbonized briquettes for domestic and industrial applications. MRS Adv. 2020;5(20):1039–48.

    Article  CAS  Google Scholar 

  47. Zhang H, Wang H, Wang H. Flame retardant mechanism and surface modification of magnesium hydroxide flame retardant. In IOP conf. series: earth and environmental science (2018).

  48. Yiga VA, Pagel S, Lubwama M, Epple S, Olupot PW, Bonten C. Development of fiber-reinforced polypropylene with NaOH pretreated rice and coffee husks as fillers: mechanical and thermal properties. J Thermoplast Compos Mater. 2020;33(9):1269–91.

    Article  CAS  Google Scholar 

  49. Choi K, Seo S, Kwon H, Kim D, Park YT. Fire protection behavior of layer-by-layer assembled starch–clay multilayers on cotton fabric. J Mater Sci. 2018;53(16):11433–43.

    Article  CAS  Google Scholar 

  50. Kaur J, Ahmad F, Ullah S, Yusoff PM, Ahmad R. The role of bentonite clay on improvement in char adhesion of intumescent fire-retardant coating with steel substrate. Arab J Sci Eng. 2017;42(5):2043–53.

    Article  CAS  Google Scholar 

  51. Kovacevic Z, Bischof S, Fan M. The influence of Spartium junceum L. fibres modified with montmorrilonite nanoclay on the thermal properties of PLA biocomposites. Compos B Eng. 2015;78:122–30.

    Article  CAS  Google Scholar 

  52. Fernandez R, Martirena F, Scrivener KL. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem Concr Res. 2011;41(1):113–22.

    Article  CAS  Google Scholar 

  53. Xu T, Huang X, Zhao Y. Investigation into the properties of asphalt mixtures containing magnesium hydroxide flame retardant. Fire Saf J. 2011;46(6):330–4.

    Article  CAS  Google Scholar 

  54. da Silva Ribeiro SP, dos Santos Cescon L, Ribeiro RQCR, Landesmann A, de Moura Estevão LR, Nascimento RSV. Effect of clay minerals structure on the polymer flame retardancy intumescent process. Appl Clay Sci. 2018;161:301–9.

    Article  CAS  Google Scholar 

  55. Kumar S, Panda AK, Singh RK. Preparation and characterization of acid and alkaline treated kaolin clay. Bull Chem React Eng Catal. 2013;8(1):61–9.

    Article  CAS  Google Scholar 

  56. Belmokhtar N, El Ayadi H, Ammari M, Allal LB. Effect of structural and textural properties of a ceramic industrial sludge and kaolin on the hardened geopolymer properties. Appl Clay Sci. 2018;162:1–9.

    Article  CAS  Google Scholar 

  57. Yaya A, Tiburu EK, Vickers ME, Efavi JK, Onwona-Agyeman B, Knowles KM. Characterisation and identification of local kaolin clay from Ghana: A potential material for electroporcelain insulator fabrication. Appl Clay Sci. 2017;150:125–30.

    Article  CAS  Google Scholar 

  58. Khan MI, Khan HU, Azizli K, Sufian S, Man Z, Siyal AA, et al. The pyrolysis kinetics of the conversion of Malaysian kaolin to metakaolin. Appl Clay Sci. 2017;146:152–61.

    Article  CAS  Google Scholar 

  59. Shahverdi-Shahraki K, Ghosh T, Mahajan K, Ajji A, Carreau PJ. Effect of dry grinding on chemically modified kaolin. Appl Clay Sci. 2015;105:100–6.

    Article  CAS  Google Scholar 

  60. Abiodun YO, Sadiq OM, Adeosun SO, Oyekan GL. Mineralogical properties of kaolin and metakaolin from selected areas in Nigeria and Its Application to Concrete Production. West Indian J Eng. 2019;42(1).

  61. Ptáček P, Šoukal F, Opravil T, Havlica J, Brandštetr J. The kinetic analysis of the thermal decomposition of kaolinite by DTG technique. Powder Technol. 2011;208(1):20–5.

    Article  CAS  Google Scholar 

  62. Abdul Rashid MK, Ramli Sulong NH, Alengaram UJ. Fire resistance performance of composite coating with geopolymer-based bio-fillers for lightweight panel application. J Appl Polym Sci. 2020;137(47):49558.

    Article  CAS  Google Scholar 

  63. Souri A, Golestani-Fard F, Naghizadeh R, Veiseh S. An investigation on pozzolanic activity of Iranian kaolins obtained by thermal treatment. Appl Clay Sci. 2015;103:34–9.

    Article  CAS  Google Scholar 

  64. Balakrishnan H, Hassan A, Isitman NA, Kaynak C. On the use of magnesium hydroxide towards halogen-free flame-retarded polyamide-6/polypropylene blends. Polym Degrad Stab. 2012;97(8):1447–57.

    Article  CAS  Google Scholar 

  65. Chungcharoen T, Srisang N. Preparation and characterization of fuel briquettes made from dual agricultural waste: Cashew nut shells and areca nuts. J Clean Prod. 2020;256: 120434.

    Article  Google Scholar 

  66. Ullah S, Ahmad F, Shariff AM, Bustam MA. Synergistic effects of kaolin clay on intumescent fire-retardant coating composition for fire protection of structural steel substrate. Polym Degrad Stab. 2014;110:91–103.

    Article  CAS  Google Scholar 

  67. Farhan OH, Ibraheem SS, Hussein SM. Study of acidic activation of Iraqi kaolin clays and its effect on the surface area properties and cation exchange capacity.

  68. Dong Y, Ghataura A, Takagi H, Haroosh HJ, Nakagaito AN, Lau KT. Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Compos A Appl Sci Manuf. 2014;63:76–84.

    Article  CAS  Google Scholar 

  69. Fang S, Yu Z, Lin Y, Hu S, Liao Y, Ma X. Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste. Energy Convers Manage. 2015;101:626–31.

    Article  Google Scholar 

  70. Yuanyuan Z, Yanxia G, Fangqin C, Kezhou Y, Yan C. Investigation of combustion characteristics and kinetics of coal gangue with different feedstock properties by thermogravimetric analysis. Thermochim Acta. 2015;614:137–48.

    Article  CAS  Google Scholar 

  71. Pu G, Zhu W, Zhou H, Lei Q, Zhang Z, Liu J. Co-combustion characteristics of inferior coal and biomass blends in an oxygen-enriched atmosphere. BioResources. 2015;10(1):1452–61.

    Article  Google Scholar 

  72. Cai Z, Ma X, Fang S, Yu Z, Lin Y. Thermogravimetric analysis of the co-combustion of eucalyptus residues and paper mill sludge. Appl Therm Eng. 2016;106:938–43.

    Article  CAS  Google Scholar 

  73. Hu S, Ma X, Lin Y, Yu Z, Fang S. Thermogravimetric analysis of the co-combustion of paper mill sludge and municipal solid waste. Energy Convers Manage. 2015;99:112–8.

    Article  Google Scholar 

  74. Olupot PW, Jonsson S, Byaruhanga JK. Characterization of feldspar and quartz raw materials in Uganda for manufacture of electrical porcelains. J Aust Ceram Soc. 2006;42(1):29–35.

    CAS  Google Scholar 

  75. Ogwang G, Olupot PW, Kasedde H, Menya E, Storz H, Kiros Y. Experimental evaluation of rice husk ash for applications in geopolymer mortars. J Bioresources Bioproducts. 2021. https://doi.org/10.1016/j.jobab.2021.02.008.

    Article  Google Scholar 

  76. Tutal A, Partschefeld S, Schneider J, Osburg A. Effects of bio-based plasticizers, made from starch, on the properties of fresh and hardened Metakaolin-Geopolymer Mortar: basic investigations. Clays Clay Miner. 2020;68(5):413–27.

    Article  CAS  Google Scholar 

  77. Zhao F, Tang T, Hou S, Fu Y. Preparation and synergistic effect of chitosan/sodium Phytate/MgO nanoparticle fire-retardant coatings on wood substrate through layer-by-layer self-assembly. Coatings. 2020;10(9):848.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Volkswagen Foundation under Grant No. 96655 entitled “Enhanced flame retardancy of bio-composite plastics developed with rice husks and clay fillers.” Technical support from the Materials and Metallurgy Lab at Busitema University Tororo, Uganda, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vianney Andrew Yiga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yiga, V.A., Lubwama, M. & Olupot, P.W. Thermal and alkali modification of kaolin for potential utilization as filler material in fiber-reinforced polylactic acid composites. J Therm Anal Calorim 147, 11077–11091 (2022). https://doi.org/10.1007/s10973-022-11379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11379-4

Keywords

Navigation