Skip to main content
Log in

Assessment of thermo-hydraulic performance of MXene-based nanofluid as coolant in a dimpled channel: a numerical approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study numerically investigates the optimization of thermal performance in a dimpled channel using a promising genre of nanofluid which is equipped with the inclusion of two-dimensional (2D) MXene (Ti3C2) nanoparticles to the soybean oil. The stream-wise and span-wise variation of the spherical dimples was kept 3.00 and 3.15 over the flow domain with an elongation of 2.5 mm. The detailed evaluation of both the local and global parameters is carried out for 0.025%, 0.075%, and 0.125% mass concentrations of MXene. The Reynolds number is varied from 1000 to 6000 to understand the effect of both the laminar and turbulent flow characteristics in predicting the thermal performance. The simulations are carried out using finite volume method (FVM) under constant heat flux, assuming the mixture of nanoparticles as homogeneous mixture. The results show that with the increase in the mass concentration of nanoparticles, thermal performances of the nanofluid increase. However, it is also identified that with the increase in Reynolds number, the thermal performance increases under turbulent flow regime. On the contrary, thermal performance was observed to be decreased with the increase in Reynolds number under laminar flow regime. An astounding improvement in 88.9% thermal performance is found for 0.125% mass concentrations of soybean-based MXene nanofluid which exclusively indicates the credibility of MXene nanofluid as a next generation potential candidate for heat exchanger industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamics

FVM:

Finite volume method

TKE:

Turbulent kinetic energy

HTC:

Heat transfer coefficient

PEC:

Performance evaluation criterion

TI:

Turbulent intensity

SO:

Soybean oil

DPM:

Discrete phase method

PER:

Properties enhancement ratio

e/d :

The ratio of dimple depth to dimpled diameter

x/d :

Stream-wise spacing

y/d :

Span-wise spacing

v :

Velocity/m s−1

C p :

Specific heat of fluid/J kg−1 K−1

D h :

Hydraulic diameter P pressure/N m−2

\(q^{\prime \prime }\) :

Wall heat flux/W m−2

T :

Temperature/K

Nu:

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

Mass%:

Nanoparticle mass concentration in percentage

k :

Thermal conductivity/W m−1 K−1

W:

Watt

μ :

Dynamic viscosity/(N s) m−2

γ :

Kinematic viscosity/m2 s−1

ρ :

Density/kg m−3

i, j, k:

Tensor index

bf:

Basefluid

nf:

Nanofluid

b:

Bulk

w:

Wall

ref:

Reference value

rs:

Rough surface

ss:

Smooth surface

np:

Nanoparticle

avg:

Averaged

0:

Initial value

Z:

Flow direction, velocity components u, v, and w in x, y, and z directions

References

  1. Alzahrani S, Usman S. CFD simulations of the effect of in-tube twisted tape design on heat transfer and pressure drop in natural circulation. Therm Sci Eng Prog. 2019;11:325–33.

    Article  Google Scholar 

  2. Nalavade SP, Prabhune CL, Sane NK. Effect of novel flow divider type turbulators on fluid flow and heat transfer. Therm Sci Eng Prog. 2019;9:322–31.

    Article  Google Scholar 

  3. Ghachem K, Aich W, Kolsi L. Computational analysis of hybrid nanofluid enhanced heat transfer in cross flow micro heat exchanger with rectangular wavy channels. Case Stud Therm Eng. 2021;24:100822.

    Article  Google Scholar 

  4. Kaood A, Hassan MA. Thermo-hydraulic performance of nanofluids flow in various internally corrugated tubes. Chem Eng Process-Process Intensif. 2020;154:108043.

    Article  CAS  Google Scholar 

  5. Eiamsa-ard S, Wongcharee K, Kunnarak K, Kumar M, Chuwattabakul V. Heat transfer enhancement of TiO2–water nanofluid flow in dimpled tube with twisted tape insert. Heat Mass Transf. 2019;55(10):2987–3001.

    Article  CAS  Google Scholar 

  6. Ahmed F, Abir MA, Redwan ASM, Bhuiyan AA, Mollah AS. The impact of D-shaped jaggedness on heat transfer enhancement technique using Al2O3 based nanoparticles. Int J Thermofluids. 2021;10: 100069.

    Article  CAS  Google Scholar 

  7. Perwez A, Shende S, Kumar R. Heat transfer and friction factor characteristic of spherical and inclined teardrop dimple channel subjected to forced convection. Exp Heat Transf. 2019;32(2):159–78.

    Article  CAS  Google Scholar 

  8. Chen J, Müller-Steinhagen H, Duffy GG. Heat transfer enhancement in dimpled tubes. Appl Therm Eng. 2001;21(5):535–47.

    Article  CAS  Google Scholar 

  9. Wang Y, He YL, Lei YG, Zhang J. Heat transfer and hydrodynamics analysis of a novel dimpled tube. Exp Therm Fluid Sci. 2010;34(8):1273–81.

    Article  Google Scholar 

  10. García A, Solano JP, Vicente PG, Viedma A. The influence of artificial roughness shape on heat transfer enhancement: corrugated tubes, dimpled tubes and wire coils. Appl Therm Eng. 2012;35:196–201.

    Article  Google Scholar 

  11. Kumar P, Kumar A, Chamoli S, Kumar M. Experimental investigation of heat transfer enhancement and fluid flow characteristics in a protruded surface heat exchanger tube. Exp Therm Fluid Sci. 2016;71:42–51.

    Article  Google Scholar 

  12. Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf. 2004;47(24):5181–8.

    Article  CAS  Google Scholar 

  13. Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf. 2003;125(1):151–5.

    Article  CAS  Google Scholar 

  14. Maiga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow. 2005;26(4):530–46.

    Article  CAS  Google Scholar 

  15. Gugulothu R, Somanchi NS, Reddy KVK, Akkiraju K. A review on enhancement of heat transfer in heat exchanger with different inserts. Mater Today: Proc. 2017;4(2):1045–50.

    Google Scholar 

  16. Li P, Zhang D, Xie Y. Heat transfer and flow analysis of Al2O3–water nanofluids in microchannel with dimple and protrusion. Int J Heat Mass Transf. 2014;73:456–67.

    Article  CAS  Google Scholar 

  17. Sinha GK, Srivastava A. Exploring the potential of nanofluids for heat transfer augmentation in dimpled compact channels: non-intrusive measurements. Int J Heat Mass Transf. 2017;108:1140–53.

    Article  CAS  Google Scholar 

  18. Suresh S, Chandrasekar M, Sekhar SC. Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube. Exp Thermal Fluid Sci. 2011;35(3):542–9.

    Article  CAS  Google Scholar 

  19. Suresh S, Chandrasekar M, Selvakumar P. Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under laminar flow in a helically dimpled tube. Heat Mass Transf. 2012;48(4):683–94.

    Article  CAS  Google Scholar 

  20. Firoozi A, Majidi S, Ameri M. A numerical assessment on heat transfer and flow characteristics of nanofluid in tubes enhanced with a variety of dimple configurations. Therm Sci Eng Prog. 2020;19: 100578.

    Article  Google Scholar 

  21. Zheng L, Xie Y, Zhang D. Numerical investigation on heat transfer performance and flow characteristics in circular tubes with dimpled twisted tapes using Al2O3–water nanofluid. Int J Heat Mass Transf. 2017;111:962–81.

    Article  CAS  Google Scholar 

  22. Abdelrazik AS, Tan KH, Aslfattahi N, Arifutzzaman A, Saidur R, Al-Sulaiman FA. Optical, stability and energy performance of water-based MXene nanofluids in hybrid PV/thermal solar systems. Sol Energy. 2020;204:32–47.

    Article  CAS  Google Scholar 

  23. Bakthavatchalam B, Habib K, Saidur R, Aslfattahi N, Yahya SM, Rashedi A, Khanam T. Optimization of thermophysical and rheological properties of mxene ionanofluids for hybrid solar photovoltaic/thermal systems. Nanomaterials. 2021;11(2):320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aslfattahi N, Samylingam L, Abdelrazik AS, Arifutzzaman A, Saidur RJSEM. MXene based new class of silicone oil nanofluids for the performance improvement of concentrated photovoltaic thermal collector. Sol Energy Mater Sol Cells. 2020;211: 110526.

    Article  CAS  Google Scholar 

  25. Kalbande VP, Walke PV, Shelke R. Aluminum-based thermal storage system with solar collector using nanofluid. Energy Storage. 2019;1(6): e99.

    Article  CAS  Google Scholar 

  26. Kalbande VP, Walke PV, Rambhad K. Performance of oil-based thermal storage system with parabolic trough solar collector using Al2O3 and soybean oil nanofluid. Int J Energy Res. 2021;45(10):15338–59.

    Article  CAS  Google Scholar 

  27. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7.

    Article  CAS  Google Scholar 

  28. Lee S, Choi SS, Li SA, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121(2):280–9.

    Article  CAS  Google Scholar 

  29. Maliga SEB, Palm SM, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement using nanofluid in forced convection flow. Int J Heat Fluid Flow. 2005;26:530–46.

    Article  Google Scholar 

  30. Alhajaj Z, Bayomy AM, Saghir MZ, Rahman MM. Flow of nanofluid and hybrid fluid in porous channels: experimental and numerical approach. Int J Thermofluids. 2020;1: 100016.

    Article  Google Scholar 

  31. Plant RD, Saghir MZ. Numerical and experimental investigation of high concentration aqueous alumina nanofluids in a two and three channel heat exchanger. Int J Thermofluids. 2021;9: 100055.

    Article  Google Scholar 

  32. Albojamal A, Vafai K. Analysis of single phase, discrete and mixture models, in predicting nanofluid transport. Int J Heat Mass Transf. 2017;114:225–37.

    Article  CAS  Google Scholar 

  33. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moon S. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9(2):e119–23.

    Article  Google Scholar 

  34. Rubbi F, Habib K, Saidur R, Aslfattahi N, Yahya SM, Das L. Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as A new class of heat transfer fluids. Sol Energy. 2020;208:124–38.

    Article  CAS  Google Scholar 

  35. George HF, Qureshi F. Newton’s law of viscosity, Newtonian and non-Newtonian fluids. In: Wang QJ, Chung YW, editors. Encyclopedia of tribology. Boston, MA: Springer; 2013. https://doi.org/10.1007/978-0-387-92897-5_143.

    Chapter  Google Scholar 

  36. Aghanajafi A, Toghraie D, Mehmandoust B. Numerical simulation of laminar forced convection of water–CuO nanofluid inside a triangular duct. Physica E. 2017;85:103–8.

    Article  CAS  Google Scholar 

  37. Ahmed F, Abir MA, Bhowmik PK, Deshpande V, Mollah AS, Kumar D, Alam S. Computational assessment of thermo-hydraulic performance of Al2O3–water nanofluid in hexagonal rod-bundles subchannel. Prog Nucl Energy. 2021;135: 103700.

    Article  CAS  Google Scholar 

  38. Ghazanfari V, Talebi M, Khorsandi J, Abdolahi R. Thermal–hydraulic modeling of water/Al2O3 nanofluid as the coolant in annular fuels for a typical VVER-1000 core. Prog Nucl Energy. 2016;87:67–73.

    Article  CAS  Google Scholar 

  39. Velagapudi V, Konijeti KR, Aduru KSC. Empirical correlations to predict thermophysical and heat transfer characteristics of nanofluids. Therm Sci. 2008;12(2):27–37.

    Article  Google Scholar 

  40. Kumar A, Maithani R, Suri ARS. Numerical and experimental investigation of enhancement of heat transfer in dimpled rib heat exchanger tube. Heat Mass Transf. 2017;53(12):3501–16.

    Article  CAS  Google Scholar 

  41. Ahmed F, Abir MA, Bhowmik PK, Deshpande V, Mollah AS. Thermohydraulic performance of water mixed Al2O3, TiO2 or graphene-oxide nanoparticles for nuclear fuel triangular subchannel. Therm Sci Eng Prog. 2021;24:100929.

    Article  CAS  Google Scholar 

  42. Fluent Inc. Fluent 6.3 user’s guide 2006. Lebanon: Fluent Inc.; 2006.

    Google Scholar 

  43. Dittus FW, Boelter LMK. Heat transfer in automobile radiators of the tubular type. Int Commun Heat Mass Transf. 1985;12(1):3–22.

    Article  Google Scholar 

  44. Maithani R, Kumar A. Correlations development for Nusselt number and friction factor in a dimpled surface heat exchanger tube. Exp Heat Transf. 2020;33(2):101–22.

    Article  CAS  Google Scholar 

  45. Benkhedda M, Boufendi T, Touahri S. Laminar mixed convective heat transfer enhancement by using Ag–TiO2–water hybrid nanofluid in a heated horizontal annulus. Heat Mass Transf. 2018;54(9):2799–814.

    Article  CAS  Google Scholar 

  46. Bianco V, Manca O, Nardini S. Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube. Int J Therm Sci. 2011;50(3):341–9.

    Article  CAS  Google Scholar 

  47. Bianco V, Chiacchio F, Manca O, Nardini S. Numerical investigation of nanofluids forced convection in circular tubes. Appl Therm Eng. 2009;29(17–18):3632–42.

    Article  CAS  Google Scholar 

  48. Hussien AA, Yusop NM, Al-Nimr MD, Abdullah MZ, Janvekar AA, Elnaggar MH. Numerical study of heat transfer enhancement using Al2O3–graphene/water hybrid nanofluid flow in mini tubes. Iran J Sci Technol Trans A: Sci. 2019;43(4):1989–2000.

    Article  Google Scholar 

  49. Ahmed F, Abir MA, Fuad M, Akter F, Bhowmik PK, Alam S, Kumar D. Numerical investigation of the thermo-hydraulic performance of water-based nanofluids in a dimpled channel flow using Al2O3, CuO, and hybrid Al2O3–CuO as nanoparticles. Heat Transf. 2021;50(5):5080–105.

    Article  Google Scholar 

  50. Osman S, Sharifpur M, Meyer JP. Experimental investigation of convection heat transfer in the transition flow regime of aluminium oxide–water nanofluids in a rectangular channel. Int J Heat Mass Transf. 2019;133:895–902.

    Article  CAS  Google Scholar 

  51. Duangthongsuk W, Wongwises S. An experimental study on the heat transfer performance and pressure drop of TiO2–water nanofluids flowing under a turbulent flow regime. Int J Heat Mass Transf. 2010;53(1–3):334–44.

    Article  CAS  Google Scholar 

  52. Zarringhalam M, Karimipour A, Toghraie D. Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–water nanofluid. Exp Thermal Fluid Sci. 2016;76:342–51.

    Article  CAS  Google Scholar 

  53. Abdollahi-Moghaddam M, Motahari K, Rezaei A. Performance characteristics of low concentrations of CuO/water nanofluids flowing through horizontal tube for energy efficiency purposes; an experimental study and ANN modeling. J Mol Liq. 2018;271:342–52.

    Article  CAS  Google Scholar 

  54. Gupta S, Sharma A, Singh K, Srivastava KK. Hydrodynamic and thermal study of water in narrow copper tube. Indian Chem Eng. 2013;55(4):294–306.

    Article  CAS  Google Scholar 

  55. Lewis MJ. Optimising the thermohydraulic performance of rough surfaces. Int J Heat Mass Transf. 1975;18(11):1243–8.

    Article  Google Scholar 

  56. Rashidi S, Hormozi F, Sundén B, Mahian O. Energy saving in thermal energy systems using dimpled surface technology—a review on mechanisms and applications. Appl Energy. 2019;250:1491–547.

    Article  Google Scholar 

  57. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S. Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory. Phys Rep. 2019;790:1–48.

    Article  CAS  Google Scholar 

  58. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2019;791:1–59.

    Article  CAS  Google Scholar 

  59. Ben Said L, Kolsi L, Ghachem K, Almeshaal M, Maatki C. Advancement of nanofluids in automotive applications during the last few years—a comprehensive review. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-11088-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F., Khanam, A., Samylingam, L. et al. Assessment of thermo-hydraulic performance of MXene-based nanofluid as coolant in a dimpled channel: a numerical approach. J Therm Anal Calorim 147, 12669–12692 (2022). https://doi.org/10.1007/s10973-022-11376-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11376-7

Keywords

Navigation