Skip to main content
Log in

Thermal and radiation degradation effects on fluoroelastomer destined to gasket applications in nuclear power plants

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Fluoroelastomers are suitable materials for several applications at high temperature. The present paper presents the modifications of material stability of fluoroelastomer Tecnoflon FOR 80 HS under hard operation conditions: thermal and radiation degradation. The sequence of aging stages influences the oxidation state of polymer, which loses its thermal characteristics in the close relation with scission degrees. The chemiluminescence investigation and mechanical testing are the selected procedures for the evaluation of sustained degradation asked for the qualification of O-rings, buffers and gaskets destined to nuclear power plants. The contributions of the two kinds of degrading energies: heat and ionizing radiation are discussed by means of the values of activation energies, which may describe the modification in the oxidation strength. The high temperatures applied in the assessment of material stability (170, 195 and 220 °C) as well as the descendant shape dependencies of the CL intensity vs time indicate the damage tendency with respect to the progress of oxidation in polymer matrix. The large differences between the evolutions of oxidation in the nonisothermal CL spectra of Tecnoflon material depict the existence of different local concentrations of radicals. Their decay takes place over about 100 °C, after which various routes of degradation are followed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Celina M, Linde E, Brunson D, Quintana A, Giron N. Overview of accelerated ageing and polymer degradation kinetics for combined radiation-thermal environment. Polym Degrad Stab. 2019;166:373–8.

    Article  Google Scholar 

  2. Zaharescu T, Jipa S. Radiochemical modifications in polymers. In: Arndt K-F, Lechner MD, editors. Landolt-Börnstein numerical data and functional relationships in science and technology Group VIII vol 6. Springer; 2013.

    Google Scholar 

  3. Mohammadian M, Asgari M, Shakur HR. Effect of gamma irradiation on the structural, mechanical and optical properties of polytetrafluorethylene sheet. Radiat Phys Chem. 2018;145:11–8.

    Article  Google Scholar 

  4. Rychlý J, Matisová-Rychlá L, Csomorová K, Janigová I, Schilling M, Learner T. Non-isothermal thermogravimetry, differential scanning calorimetry and chemiluminescence in degradation of polyethylene, polypropylene, polystyrene and poly(methyl methacrylate). Polym Degrad Stab. 2011;96:1573–81.

    Article  Google Scholar 

  5. Jipa S, Zaharescu T, Setnescu R, Kappel W, Oros C, Gorghiu LM. RTL study of structural modifications in irradiated PTFE. Nucl Instrum Meth in Phys Res. 2007;B265:305–8.

    Article  Google Scholar 

  6. Forsythe JS, Hill DJT. The radiation chemistry of fluoropolymers. Prog Polym Sci. 2000;25:101–6.

    Article  CAS  Google Scholar 

  7. Charlesby A (Ed.) Atomic Radiation and Polymers. Pergamon Press; 1960. p. 164

  8. Liu SL, Gu AG, Fu CL, Yu XW, Xie MJ, Yu ZL. Influence of irradiation conditions on the properties of PTFE micropowder. Key Eng Mater. 2016;689:55–9.

    Article  Google Scholar 

  9. Tan Z, Wang X, Fu C, Chen C, Ran X. Effect of electron irradiation on structural and thermal properties of gamma poly(vinylidene fluoride) (γ-PVDF) films. Radiat Phys Chem. 2018;144:48–55.

    Article  CAS  Google Scholar 

  10. Liz OSR, Medeiros AS, Faria LO. FTIR and DSC studies on gamma irradiated P(VdF-HFP) fluoropolymers applied to dosimetry. Nucl Instrum Meth Phys Res. 2011;B269:2819–23.

    Article  Google Scholar 

  11. Galante AMS, Galante OL, Campos LL. Study on application of PTFE, FEP and PFA fluoropolymers on radiation dosimetry. Nucl Instrum Meth Phys Res. 2010;A619:177–80.

    Article  Google Scholar 

  12. Jipa S, Zaharescu T, Mărcuţă M, Setnescu R, Gorghiu LM, Dumitrescu C. Synergistic effects of EB irradiation and heat on EVA electrical insulators. Nucl Instrum Meth Phys Res. 2010;B236:567–74.

    Google Scholar 

  13. Dumas L, Albela B, Nonneviot L, Portinha D, Fleury E. ESR investigation of radicals formed in γ-irradiated vinylidene fluoride based copolymer: P(VDF-co-HFP). Radiat Phys Chem. 2013;86:118–28.

    Article  CAS  Google Scholar 

  14. Manzoni C, Comino G, Stanga M, Albani M. (Per)fluoroelastomers compositions. US Patent 8,242,210, 2008.

  15. Bonardeli P, Moggi G. Glass transition temperatures of copolymer and terpolymer fluoroelastomers. Polymer. 1986;27:905–9.

    Article  Google Scholar 

  16. Koutný M, Václavková T, Matisová-Rychlá L, Rychlý J. Characterization of oxidation progress by chemiluminescence. a study of polyethylene with pro-oxidant additives. Polym Degrad Stab. 2008;93:1515–9.

    Article  Google Scholar 

  17. Furuta M, Matsugaki A, Nakano T, Hirata I, Kato K, Oda T, Sato M, Okazaki M. Molecular level analysis of mechanical properties of PTFE sterilized with Co60 γ-ray irradiation for clinical use. Radiat Phys Chem. 2017;139:126–31.

    Article  CAS  Google Scholar 

  18. Zhong X, Yu L, Sun J, Zhang Y. Radiation stability of PTFE irradiated under various conditions. Polym Degrad Stab. 1993;39:187–91.

    Article  CAS  Google Scholar 

  19. Colin X, Fayolle B, Audouin L, Verdu J. About quasi-universal character of unstabilised polyethylene thermal oxidation kinetics. Polym Degrad Stab. 2003;80:67–74.

    Article  CAS  Google Scholar 

  20. Cuccuru A, Sodi F. Thermal stability of γ-irradiated fluoroelastomers. Thermochim Acta. 1975;12:281–6.

    Article  CAS  Google Scholar 

  21. Zhen ZX. Long lived fluoropolymeric radicals in irradiated fluoropolymer powders at room temperature. Radiat Phys Chem. 1990;35:194–8.

    CAS  Google Scholar 

  22. Giovedi C, Segura Pino E, Rabello Rosi M, Brocardo Machado LD. Electron beam irradiation effects on the mechanical, thermal and surface properties of a fluoroelastomer. Nucl Instrum Meth. 2007;B265:256–9.

    Article  Google Scholar 

  23. Liu M, Cataldi P, Young RJ, Papageorgiou DG, Kinloch IA. High-performance fluoroelastomer-graphene nanocomposites for advanced sealing applications. Compos Sci technol. 2021;202:108592.

    Article  CAS  Google Scholar 

  24. Yamaki T, Nuryanthi N, Katamura A, Koshikawa H, Saeada S, Voss KO, Severin D, Trautmann C. Fluoroplymer based nanostructured membranes created by swift-heavy-ion irradiation and their energy and environmental applications. Nucl Instrum Meth Phys Res. 2018;B435:162–8.

    Article  Google Scholar 

  25. Larsen MJ, Ma Y, Quin H, Toftlund H, Lund PB. Stability of radicals in electron-irradiated fluoropolymer film for the preparation of graft copolymer fuel cell electrolyte membranes. Solid State Ionics. 2010;181:201–5.

    Article  CAS  Google Scholar 

  26. Zen HA, Ribero G, Geraldes AN, Souza CP, Parra DF, Lugão AB. Effect of radiation induced crosslinking and degradation of ETFE films. Radiat Phys Chem. 2013;84:136–9.

    Article  CAS  Google Scholar 

  27. Batista ASM, Faria LO. DSC studies on gamma irradiated poly(vinylidene fluoride) applied to high gamma dose dosimetry. Radiat Phys Chem. 2017;140:116–21.

    Article  CAS  Google Scholar 

  28. Van Der Walt IJ, Bruinsma OSL. Depolymerization of clean unfilled PTFE waste in a continuous process. J Appl Polym Sci. 2006;102:2752–9.

    Article  Google Scholar 

  29. Chipară MD, Chipară MI. Effects of gamma irradiation on PTFE. Polym Degrad Stab. 1992;37:67–71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Traian Zaharescu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 671 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borbath, T., Borbath, I. & Zaharescu, T. Thermal and radiation degradation effects on fluoroelastomer destined to gasket applications in nuclear power plants. J Therm Anal Calorim 147, 11139–11145 (2022). https://doi.org/10.1007/s10973-022-11366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11366-9

Keywords

Navigation