Skip to main content
Log in

Reinvestigation of thermal and other properties of compounds from the V2O5–SrO system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Reinvestigation of the V2O5–SrO system allowed final confirmation of formation of four compounds of the following stoichiometric formulas: Sr(VO3)2, Sr2V2O7, Sr3(VO4)2 and Sr4V2O9. The results presented permitted solving literature controversies regarding low- and high-temperature polymorphs of strontium metavanadate(V), i.e. Sr(VO3)2-I and Sr(VO3)2-II. The polymorphic transformation of both varieties that crystallize in the orthorhombic system was proved to be reversible and take place at 530 °C. Strontium metavanadate(V) was found to melt incongruently at 670 °C with deposition of solid Sr2V2O7. Both polymorphic forms of Sr(VO3)2 were studied by IR and SEM methods. According to the results of tests using the UV-Vis-DRS method, both polymorphs Sr(VO3)2 belong to the semiconductor class. Thermal stabilities of Sr2V2O7, Sr3(VO4)2 and Sr4V2O9 were verified. The powder diffractogram of Sr4V2O9 was indexed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kaur P, Khanna A. Structural, electrical and luminescence properties of M2V2O7 (M = Mg, Ca, Sr, Ba, Zn). J Mater Sci: Mater Electron. 2021;32:21813–23.

    CAS  Google Scholar 

  2. Sharma A, Varshney M, Chae K-H, Won SO. Electronic structure and luminescence assets in white-light emitting Ca2V2O7, Sr2V2O7 and Ba2V2O7 pyro-vanadates: X-ray absorption spectroscopy investigations. RSC Adv. 2018;8:26423–31.

    Article  CAS  Google Scholar 

  3. Bedyal AK, Kumar V, Swart HC. Charge compensated derived enhanced red emission from Sr3(VO4)2:Eu3+ nanophosphors for white light emitting diodes and flat panel displays. J Alloys Compd. 2017;109:362–72.

    Article  Google Scholar 

  4. Li L, Wang W, Pan Y, Zhu Y, Liu X, Noh HM, Moon BK, Choi BC, Jeong JH. Preferential occupancy of Eu3+ and energy transfer in Eu3+ doped Sr2V2O7, Sr9Gd(VO4)7 and Sr2V2O7/ Sr9Gd(VO4)7 phosphors. RSC Adv. 2018;8:1191–202.

    Article  CAS  Google Scholar 

  5. Sawala NS, Koparkar KA, Bajaj NS, Omanwar SK. Near-infrared spectral downshifting in Sr(3–x)(VO4)2:xNd3+ phosphor. Bull Mater Sci. 2016;39:1625–9.

    Article  CAS  Google Scholar 

  6. Machida M, Ikematsu A, Nur ASM, Yoshida H. Catalytic SO3 decomposition activity of SiO2-supported alkaline earth vanadates for solar thermochemical water splitting cycles. ACS Appl Energy Mater. 2021;4:1696–703.

    Article  CAS  Google Scholar 

  7. Zhou Y, Kang S-Z, Qin L, Li X. Boosting charge separation and nitrogen vacancies in graphitic carbon nitride by implanted strontium vanadate for highly efficient photocatalytic reduction of hexavalent chromium. RSC Adv. 2021;11:16034–9.

    Article  CAS  Google Scholar 

  8. Karthik R, Kumar JV, Chen S-M, Kumar PS, Selvam V, Muthuraj V. A selective electrochemical sensor for caffeic acid and photocatalyst for metronidazole drug pollutant - a dual role by rod-like SrV2O6. Sci Rep. 2017;7:1–12.

    Article  CAS  Google Scholar 

  9. Chen J, Li C, Xiang H, Tang Y, Fang L. SrV2O6: an ultralow-firing microwave dielectric ceramic for LTCC applications. Mater Res Bull. 2018;100:377–81.

    Article  CAS  Google Scholar 

  10. Fotiev AA, Makarov VA. Crystal optics of strontium vanadates and phase diagram of V2O5-SrO system. Sov Phys – Crystallogr. 1970;14:621–3.

  11. Solacolu S, Dinescu R, Zaharescu M. Thermal phase equilibrium of the strontium oxide-vanadium pentoxide system. Rev Roum Chim. 1972;17:311–7.

    CAS  Google Scholar 

  12. Brown JJ Jr. Phase equilibria in the system SrO–CdO–V2O5. J Am Ceram Soc. 1972;55:500–3.

    Article  CAS  Google Scholar 

  13. Fotiev AA, Bazuev GV. Phase relations in the lanthanum oxide-vanadium pentoxide-strontium oxide system. Zh Neorg Khim. 1984;29:1337–40.

    CAS  Google Scholar 

  14. Zhuravlev VD, Velikodnyi YuA, Kristallov LV. Phase equilibrium in the copper monoxide-strontium oxide-vanadium pentoxide system. Zh Neorg Khim. 1987;32:3060–3.

    CAS  Google Scholar 

  15. Fotiev AA, Slobodin BV, Khodos MYa. Vanadates. Composition, synthesis, structure, properties. Moskva: Nauka; 1988.

  16. Unnimaya AN, Suresh EK, Ratheesh. Crystal structure and microwave dielectric properties of new alkaline earth vanadate A4V2O9 (A = Ba, Sr, Ca, Mg and Zn) ceramics for LTCC applications. Mater Res Bull. 2017;88:174–81.

    Article  CAS  Google Scholar 

  17. Zhu YN, Zheng GH, Dai ZX, Zhang LY, Li YQ, Mu JJ. Luminescent properties of Sr4V2O9:Eu3+, Ba2+ phosphors prepared by a solvothermal method. Mater Res Bull. 2015;70:222–8.

    Article  CAS  Google Scholar 

  18. Mi L, Huang Y, Liu X, Qin L, Seo HJ. Improvement of self-activated luminescence from introduced cation disorder in Sr6V2O11. J Am Ceram Soc. 2018;101:2987–95.

    Article  CAS  Google Scholar 

  19. Maeda H, Zhang PX, Watanabe K, Matsushita T, Otabe ES. Fabrication and properties of Ag-sheathed Bi2223 tapes with Sr6V2O11 oxide barriers between filaments. Phys C. 2000;335:35–8.

    Article  CAS  Google Scholar 

  20. Teixeira MM, Gouveia AF, de Sousa AG, da Silva LF, de Oliveira RC, San-Miguel MA, Li MS, Longo E. Unraveling the photoluminescence properties of the Sr10V6O25 structure through experimental and theoretical analyses. J Phys Chem C. 2020;124:14446–58.

    Article  CAS  Google Scholar 

  21. Yan Y, Yu Y, Wu D, Yang Y, Cao Y. TiO2/vanadate (Sr10V6O25, Ni3V2O8, Zn2V2O7) heterostructured photocatalysts with enhanced photocatalytic activity for photoreduction of CO2 into CH4. Nanoscale. 2016;8:949–58.

    Article  CAS  Google Scholar 

  22. Suresh EK, Prasad K, Arun NS, Ratheesh R. Synthesis and microwave dielectric properties of A16V18O61 (A = Ba, Sr and Ca) ceramics for LTCC applications. J Electron Mater. 2016;45:2996–3002.

    Article  CAS  Google Scholar 

  23. Schnuriger B, Enjalbert R, Savariault JM, Galy J. Synthesis and crystal structure of β-SrV2O6. J Solid State Chem. 1991;95:397–402.

    Article  CAS  Google Scholar 

  24. Glazyrin MP, Ivakin AA, Alyamovskii SI. Phase diagrams of magnesium metavanadate-​potassium metavanadate, magnesium metavanadate-​strontium metavanadate, and calcium metavanadate-​strontium metavanadate pseudobinary systems. Zh Neorg Khim. 1975;20:1081–4.

    CAS  Google Scholar 

  25. Zabara OA, Krasnenko TI, Zhilyaev VA. Occurrence of the Hedwall effect during solid-​state synthesis of strontium metavandanate. Izv Akad Nauk SSSR, Neorg Mater. 1991;27:1032–5.

    CAS  Google Scholar 

  26. Karpov OG, Simonov MA, Krasnenko TI, Zabara OA. Crystal structure of α-strontium vanadate (SrV2O6). Kristallografiya. 1989;34:1392–5.

    CAS  Google Scholar 

  27. Krasnenko TI, Zabara OA, Zolotukhina LV. Crystal-​chemical analysis of structural transformations in a morphotropic series of divalent metal metavanadates. Zh Neorg Khim. 2001;46:641–5.

    CAS  Google Scholar 

  28. Kristallov LV, Perelyaeva LA, Vovkotrub EG, Kiseleva NV. Vibrational spectra of isostructural strontium and lead metavanadates. Zh Neorg Khim. 1991;36:2141–7.

    CAS  Google Scholar 

  29. Li Z-A, Yang H-X, Tian H-F, Zhang Y, Li J-Q. Fabrication and characterization of micro-pattern dandelion-like and nanobelts of β-SrV2O6 via hydrothermal process. Chin J Chem Phys. 2007;20:727–32.

    Article  CAS  Google Scholar 

  30. Blonska-Tabero A, Bosacka M, Filipek E, Piz M, Kochmanski P. High-temperature synthesis and unknown properties of M3Cr4(PO4)6, where M = Zn or Mg and a new solid solution Zn1.5Mg1.5Cr4(PO4)6. J Therm Anal Calorim. 2020;140:2625–31.

    Article  CAS  Google Scholar 

  31. Piotrowska D, Szczygieł I. Phase equilibria in the ErPO4-KPO3-Er(PO3)3 partial system. J Therm Anal Calorim. 2022;147:1621–9.

    Article  CAS  Google Scholar 

  32. Tabero P, Filipek E, Piz M. Reactivity of T-Nb2O5 or H-Nb2O5 towards V2O5. Synthesis in the solid state and properties of V4Nb18O55. Cent Eur J Chem. 2009;7:222–7.

    CAS  Google Scholar 

  33. Bouloux J-C, Galy J, Hagenmuller P. Calcium, strontium, or barium oxide-​vanadium(V) oxide-​vanadium(IV) oxide ternary systems. Rev Chim Miner. 1974;11:48–70.

    CAS  Google Scholar 

  34. Jordan BD, Calvo C. Crystal structure of lead metavanadate, PbV2O6. Can J Chem. 1974;52:2701–4.

    Article  CAS  Google Scholar 

  35. Yao T, Oka Y, Yamamoto N. Structure refinement of barium metavanadate BaV2O6. Inorganica Chim Acta. 1995;238:165–8.

    Article  CAS  Google Scholar 

  36. Dimitrov V, Dimitriev Y. Structure of glasses in PbO–V2O5 system. J Non-Cryst Solids. 1990;122:133–8.

    Article  CAS  Google Scholar 

  37. Alagna L, Endregard M, Prosperi T, Tomlinson AAG. X-ray absorption spectroscopic study of the binary semiconducting glass PbV2O6. J Mater Chem. 1994;4:943–7.

    Article  CAS  Google Scholar 

  38. Kristallov LV, Tsvetkova MP, Fotiev AA. Vibrational spectra of alkaline earth metavanadates. Zh Neorg Khim. 1984;29:1723–8.

    CAS  Google Scholar 

  39. Busca G, Ricchiardi G, Siew Hew Sam D, Volta J-C. Spectroscopic characterization of magnesium vanadate catalysts. J Chem Soc Faraday Trans. 1994;90:1161–70.

    Article  CAS  Google Scholar 

  40. Dąbrowska G, Filipek E, Piz M. A new ceramic continuous solid solution in the CrSnSbO6–FeSnSbO6 system and some of its properties. Ceram Int. 2015;41:12560–7.

    Article  Google Scholar 

Download references

Acknowledgements

The study was co-financed by a subsidy for the research activity of the Ministry of Education and Science in Poland for the Faculty of Chemical Technology and Engineering of West Pomeranian University of Technology, Szczecin; Grant No. 503-10-085-13/4.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Anna Blonska-Tabero, Elzbieta Filipek, Monika Bosacka and Agnieszka Prokop. The first draft of the manuscript was written by Anna Blonska-Tabero and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elzbieta Filipek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blonska-Tabero, A., Filipek, E., Bosacka, M. et al. Reinvestigation of thermal and other properties of compounds from the V2O5–SrO system. J Therm Anal Calorim 147, 9903–9911 (2022). https://doi.org/10.1007/s10973-022-11363-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11363-y

Keywords

Navigation