Skip to main content
Log in

Thermal performance of a circular tube embedded with TBVG inserts: an experimental study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The results of various geometrical and flow parameters on thermal energy transfer and performance of tube heat exchangers with solid and perforated "triple-blade vortex generator" insert are presented in this study. Pitch ratio = 1,2,3,4, blade angle = 45°, and perforation index = 0%, 25% are the parameters used in the experiment. The experiments are carried out over a wide range of Reynolds numbers, ranging from 6000 to 24,000. A three-dimensional numerical analysis is also performed to gain a better understanding of fluid flow behavior and heat transfer mechanisms. The results show that using the triple-blade vortex generator insert improves the performance of a heat exchanger. The heat transfer escalation detected in comparison with a simple heat exchanger with a plain tube is in the range of 2.4–4.35, maximum for pitch ratio of 1 and 0% perforation index and a minimum for pitch ratio of 4 and 25% perforation index. The friction factor varies from 0.43 to 3.15, lowest for pitch ratio of 4 and a 25% perforation index and the highest for pitch ratio of 1 and 0% perforation index. The maximum thermal performance of 1.16 is achieved with a pitch ratio of 1 and a perforation index of 25%. For the prediction of Nusselt number, friction factor, and the thermal performance factor of the tubular heat exchanger with triple-blade vortex generator inserts, statistical correlations are developed using experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A c :

Cross-sectional area of tube, m2

A o :

Cross-sectional area of orifice, m2

A s :

Surface area of tube, m2

C d :

Coefficient of discharge for orifice meter

C p :

Specific heat of air at constant pressure, J kg−1 K−1

D:

Internal diameter of the tube m

dh :

Diameter of hole for perforation, m

h:

Convective heat transfer coefficient, W m−2 K−1

k :

Thermal conductivity of air, W m−1 K−1

L:

Length of the tube, m

:

Mass flow rate of fluid, kg s−1

ΔP :

Pressure drop across test section, Pa

ΔP o :

Pressure drop across the orifice plate, Pa

Pa :

Atmospheric pressure, Pa

Q:

Heat transfer rate, W

T a :

Ambient temperature, K

T i :

Fluid inlet temperature, K

T o :

Fluid outlet temperature, K

ΔT m :

Log mean temperature difference, K

T wm :

Mean wall temperature, K

T w :

Local wall temperature, K

V:

Velocity of air, m/s

σ :

Stefan–Boltzmann constant, W m−2 K−4

ρ :

Density of air, kg m−3

µ :

Dynamic viscosity, kg ms

β :

Ratio of orifice diameter to tube internal diameter

f :

Friction factor

f s :

Friction factor of smooth tube

Re :

Reynolds number

l :

Spacing between two consecutive insert geometry, m

Pr:

Prandtl number

Nu :

Nusselt number

Nu s :

Nusselt number of smooth tube

T w :

Local wall temperature, °C

T b :

Bulk mean temperature, °C

T wm :

Wall mean temperature, °C

t :

Thickness of insert blade, m

TR :

Thickness ratio

PR :

Pitch ratio

PI :

Perforation index, %

BA :

Blade angle, °

TPF:

Thermal performance factor

TBVG:

Triple-blade vortex generator

References

  1. El-Sayed SA, El-Sayed SA, Abdel-Hamid ME, Sadoun MM. Experimental study of turbulent flow inside a circular tube with longitudinal interrupted fins in the streamwise direction. Exp Thermal Fluid Sci. 1997;15(1):1–15. https://doi.org/10.1016/S0894-1777(96)00078-7.

    Article  CAS  Google Scholar 

  2. Bas H, Ozceyhan V. Heat transfer enhancement in a tube with twisted tape inserts placed separately from the tube wall. Exp Thermal Fluid Sci. 2012;41:51–8. https://doi.org/10.1016/j.expthermflusci.2012.03.008.

    Article  Google Scholar 

  3. Bhuiya MMK, Sayem ASM, Islam M, Chowdhury MSU, Shahabuddin M. Performance assessment in a heat exchanger tube fitted with double counter twisted tape inserts. Int Commun Heat Mass Transf. 2014;50:25–33. https://doi.org/10.1016/j.icheatmasstransfer.2013.11.005.

    Article  Google Scholar 

  4. Bhuiya MMK, Chowdhury MSU, Shahabuddin M, Saha M, Memon LA. Thermal characteristics in a heat exchanger tube fitted with triple twisted tape inserts. Int Commun Heat Mass Transf. 2013;48:124–32. https://doi.org/10.1016/j.icheatmasstransfer.2013.08.024.

    Article  Google Scholar 

  5. Promvonge P, Eiamsa-ard S. Heat transfer behaviors in a tube with combined conical-ring and twisted-tape insert. Int Commun Heat Mass Transf. 2007;34(7):849–59. https://doi.org/10.1016/j.icheatmasstransfer.2007.03.019.

    Article  Google Scholar 

  6. Promvonge P. Thermal augmentation in circular tube with twisted tape and wire coil turbulators. Energy Convers Manage. 2008;49(11):2949–55. https://doi.org/10.1016/j.enconman.2008.06.022.

    Article  Google Scholar 

  7. Eiamsa-Ard S, Kongkaitpaiboon V, Nanan K. Thermohydraulics of turbulent flow through heat exchanger tubes fitted with circular-rings and twisted tapes. Chin J Chem Eng. 2013;21(6):585–93. https://doi.org/10.1016/S1004-9541(13)60504-2.

    Article  CAS  Google Scholar 

  8. Eiamsa-Ard S, Promvonge P. Thermal characteristics in round tube fitted with serrated twisted tape. Appl Therm Eng. 2010;30(13):1673–82. https://doi.org/10.1016/j.applthermaleng.2010.03.026.

    Article  Google Scholar 

  9. Bhuiya MMK, Chowdhury MSU, Saha M, Islam MT. Heat transfer and friction factor characteristics in turbulent flow through a tube fitted with perforated twisted tape inserts. Int Commun Heat Mass Transf. 2013;46:49–57. https://doi.org/10.1016/j.icheatmasstransfer.2013.05.012.

    Article  Google Scholar 

  10. Pal S, Saha SK. Laminar fluid flow and heat transfer through a circular tube having spiral ribs and twisted tapes. Exp Thermal Fluid Sci. 2015;60:173–81. https://doi.org/10.1016/j.expthermflusci.2014.09.005.

    Article  Google Scholar 

  11. Zhang C, Wang D, Ren K, Han Y, Youjian Zhu Xu, Peng JD, Zhang X. A comparative review of self-rotating and stationary twisted tape inserts in heat exchanger. Renew Sustain Energy Rev. 2016;53:433–49. https://doi.org/10.1016/j.rser.2015.08.048.

    Article  Google Scholar 

  12. Salem MR, Eltoukhey MB, Ali RK, Elshazly KM. Experimental investigation on the hydrothermal performance of a double-pipe heat exchanger using helical tape insert. Int J Therm Sci. 2018;124:496–507. https://doi.org/10.1016/j.ijthermalsci.2017.10.040.

    Article  Google Scholar 

  13. Abolarin SM, Everts M, Meyer JP. The influence of peripheral U-cut twisted tapes and ring inserts on the heat transfer and pressure drop characteristics in the transitional flow regime. Int J Heat Mass Transf. 2019;132:970–84. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.051.

    Article  CAS  Google Scholar 

  14. Chu W-X, Tsai C-A, Lee B-H, Cheng K-Y, Wang C-C. Experimental investigation on heat transfer enhancement with twisted tape having various V-cut configurations. Appl Therm Eng. 2020;172:115148. https://doi.org/10.1016/j.applthermaleng.2020.115148.

    Article  Google Scholar 

  15. Fagr MH, Rishak QA, Mushatet KS. performance evaluation of the characteristics of flow and heat transfer in a tube equipped with twisted tapes of new configurations. Int J Therm Sci. 2020;153:106323. https://doi.org/10.1016/j.ijthermalsci.2020.106323.

    Article  Google Scholar 

  16. Dagdevir T, Ozceyhan V. An experimental study on heat transfer enhancement and flow characteristics of a tube with plain, perforated and dimpled twisted tape inserts. Int J Thermal Sci. 2021;159:106564. https://doi.org/10.1016/j.ijthermalsci.2020.106564.

    Article  CAS  Google Scholar 

  17. Chang SW, Wu PS, Liu JH. Aerothermal performance of square duct enhanced by twisted tape with inclined ribs and slots. Int J Heat Mass Transf. 2021;177:121547. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121547.

    Article  Google Scholar 

  18. Singh SK, Kumar A. Experimental study of heat transfer and friction factor in a double pipe heat exchanger using twisted tape with dimple inserts. Energy Sour Part A Recov Util Environ Effects. 2021. https://doi.org/10.1080/15567036.2021.1927248.

    Article  Google Scholar 

  19. Promvonge P, Eiamsa-ard S. Heat transfer and turbulent flow friction in a circular tube fitted with conical-nozzle turbulators. Int Commun Heat Mass Transf. 2007;34(1):72–82. https://doi.org/10.1016/j.icheatmasstransfer.2006.08.003.

    Article  CAS  Google Scholar 

  20. Kongkaitpaiboon V, Nanan K, Eiamsa-ard S. Experimental investigation of heat transfer and turbulent flow friction in a tube fitted with perforated conical-rings. Int Commun Heat Mass Transf. 2010;37(5):560–7. https://doi.org/10.1016/j.icheatmasstransfer.2009.12.015.

    Article  Google Scholar 

  21. Gunes S, Ozceyhan V, Buyukalaca O. Heat transfer enhancement in a tube with equilateral triangle cross sectioned coiled wire inserts. Exp Thermal Fluid Sci. 2010;34(6):684–91. https://doi.org/10.1016/j.expthermflusci.2009.12.010.

    Article  Google Scholar 

  22. Kongkaitpaiboon V, Nanan K, Eiamsa-ard S. Experimental investigation of convective heat transfer and pressure loss in a round tube fitted with circular-ring turbulators. Int Commun Heat Mass Transf. 2010;37(5):568–74. https://doi.org/10.1016/j.icheatmasstransfer.2009.12.016.

    Article  Google Scholar 

  23. Eiamsa-ard S, Promvonge P. Influence of double-sided delta-wing tape insert with alternate-axes on flow and heat transfer characteristics in a heat exchanger tube. Chin J Chem Eng. 2011;19(3):410–23. https://doi.org/10.1016/S1004-9541(11)60001-3.

    Article  CAS  Google Scholar 

  24. Kumar A, Singh S, Chamoli S, Kumar M. Experimental investigation on thermo-hydraulic performance of heat exchanger tube with solid and perforated circular disk along with twisted tape insert. Heat Transf Eng. 2018;40(8):616–26. https://doi.org/10.1080/01457632.2018.1436618.

    Article  CAS  Google Scholar 

  25. Singh SK, Kumar M, Kumar A, Gautam A, Chamoli S. Thermal and friction characteristics of a circular tube fitted with perforated hollow circular cylinder inserts. Appl Therm Eng. 2018;130:230–41. https://doi.org/10.1016/j.applthermaleng.2017.10.090.

    Article  Google Scholar 

  26. Skullong S, Promvonge P, Thianpong C, Jayranaiwachira N, Pimsarn M. Thermal performance of heat exchanger tube inserted with curved-winglet tapes. Appl Therm Eng. 2018;129:1197–211. https://doi.org/10.1016/j.applthermaleng.2017.10.110.

    Article  Google Scholar 

  27. Wijayanta AT, Yaningsih I, Aziz M, Miyazaki T, Koyama S. Double-sided delta-wing tape inserts to enhance convective heat transfer and fluid flow characteristics of a double-pipe heat exchanger. Appl Therm Eng. 2018;145:27–37. https://doi.org/10.1016/j.applthermaleng.2018.09.009.

    Article  Google Scholar 

  28. Chamoli S, Ruixin Lu, Xie J, Peng Yu. Numerical study on flow structure and heat transfer in a circular tube integrated with novel anchor shaped inserts. Appl Therm Eng. 2018;135:304–24. https://doi.org/10.1016/j.applthermaleng.2018.02.052.

    Article  Google Scholar 

  29. Gururatana S, Skullong S. Experimental investigation of heat transfer in a tube heat exchanger with airfoil-shaped insert. Case Studies Thermal Eng. 2019;14:100462. https://doi.org/10.1016/j.csite.2019.100462.

    Article  Google Scholar 

  30. Nakhchi ME, Esfahani JA, Kim KC. Numerical study of turbulent flow inside heat exchangers using perforated louvered strip inserts. Int J Heat Mass Transf. 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119143.

    Article  Google Scholar 

  31. Liang Y, Liu P, Zheng N, Shan F, Liu Z, Liu W. Numerical investigation of heat transfer and flow characteristics of laminar flow in a tube with center-tapered wavy-tape insert. Appl Thermal Eng. 2019;148:557–67. https://doi.org/10.1016/j.applthermaleng.2018.11.090.

    Article  Google Scholar 

  32. Hong Y, Juan Du, Wang S, Ye W-B, Huang S-M. Turbulent thermal-hydraulic and thermodynamic characteristics in a traverse corrugated tube fitted with twin and triple wire coils. Int J Heat Mass Transf. 2019;130:483–95. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.087.

    Article  Google Scholar 

  33. Paneliya S, Khanna S, Mankad V, Ray A, Prajapati P, Mukhopadhyay I. Comparative study of heat transfer characteristics of a tube equipped with x-shaped and twisted tape insert. Mater Today Proc. 2020;28:1175–80. https://doi.org/10.1016/j.matpr.2020.01.103.

    Article  CAS  Google Scholar 

  34. Bahuguna R, Mer KKS, Kumar M, Chamoli S. Thermohydraulic performance and second law analysis of a tube embedded with multiple helical tape inserts. Energy Sour Part A Recov Util Environ Effects. 2021. https://doi.org/10.1080/15567036.2021.1904057.

    Article  Google Scholar 

  35. Singh BP, Bisht VS, Bhandari P. Numerical study of heat exchanger having protrusion and dimple roughened conical ring inserts. In: Sikarwar BS, Sundén B, Wang Q, editors. Advances in fluid and thermal engineering. Singapore: Springer; 2021. p. 151–61.

    Chapter  Google Scholar 

  36. Zarei R, Razzaghi K, Shahraki F. Experimental characterization of heat transfer enhancement in a circular tube fitted with Koflo Blade™ inline mixer. Chem Eng Process Process Intensif. 2021;166:108508. https://doi.org/10.1016/j.cep.2021.108508.

    Article  CAS  Google Scholar 

  37. Ebrahimi A, Naranjani B. An investigation on thermo-hydraulic performance of a flat-plate channel with pyramidal protrusions. Appl Thermal Eng. 2016;106:316–24. https://doi.org/10.1016/j.applthermaleng.2016.06.015.

    Article  Google Scholar 

  38. Ebrahimi A, Roohi E. Numerical study of flow patterns and heat transfer in mini twisted oval tubes. Int J Mod Phys C. 2015;26(12):1550140. https://doi.org/10.1142/S0129183115501405.

    Article  CAS  Google Scholar 

  39. Manoram RB, Sathiya Moorthy R, Ragunathan R. Investigation on influence of dimpled surfaces on heat transfer enhancement and friction factor in solar water heater. J Therm Anal Calorim. 2021;145(2):541–58. https://doi.org/10.1007/s10973-020-09746-0.

    Article  CAS  Google Scholar 

  40. Bhattacharyya S, Benim AC, Bennacer R, Dey K. Influence of broken twisted tape on heat transfer performance in novel axial corrugated tubes: experimental and numerical study. Heat Transfer Eng. 2022;43(3–5):437–62. https://doi.org/10.1080/01457632.2021.1875168.

    Article  CAS  Google Scholar 

  41. Kline SJ, McClintock FA. Describing uncertainties in single sample experiments. Mech Eng. 1953;75:385–7.

    Google Scholar 

  42. Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. Harlow: Pearson/Prentice Hall; 2008.

    Google Scholar 

  43. Nanan K, Thianpong C, Pimsarn M, Chuwattanakul V, Eiamsa-ard S. Flow and thermal mechanisms in a heat exchanger tube inserted with twisted cross-baffle turbulators. Appl Therm Eng. 2017;114:130–47. https://doi.org/10.1016/j.applthermaleng.2016.11.153.

    Article  CAS  Google Scholar 

  44. Li P, Liu P, Liu Z, Liu W. Experimental and numerical study on the heat transfer and flow performance for the circular tube fitted with drainage inserts. Int J Heat Mass Transf. 2017;107:686–96. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.094.

    Article  CAS  Google Scholar 

  45. Eiamsa-ard S, Wongcharee K, Eiamsa-ard P, Thianpong C. Heat Transfer enhancement in a tube using delta-winglet twisted tape inserts. Appl Therm Eng. 2010;30(4):310–8. https://doi.org/10.1016/j.applthermaleng.2009.09.006.

    Article  Google Scholar 

  46. Piriyarungrod N, Eiamsa-ard S, Thianpong C, Pimsarn M, Nanan K. Heat transfer enhancement by tapered twisted tape inserts. Chem Eng Process. 2015;96:62–71. https://doi.org/10.1016/j.cep.2015.08.002.

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

RB, KKSM, MK, and SC conceived and planned the experiments. RB carried out the experiments. RB and SC planned and carried out the numerical simulations. KKSM, MK, and SC contributed to the interpretation of the results. RB took the lead in writing the manuscript. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Corresponding author

Correspondence to Rahul Bahuguna.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Uncertainty analysis

Appendix: Uncertainty analysis

Reynolds number

$$\mathrm{Re}=\frac{\rho \mathrm{VD}}{\mu }$$
$$\frac{\delta \mathrm{Re}}{\mathrm{Re}}={\left[{\left(\frac{\delta \rho }{\rho }\right)}^{2}+{\left(\frac{\delta V}{V}\right)}^{2}+{\left(\frac{\delta D}{D}\right)}^{2}+{\left(\frac{\delta \mu }{\mu }\right)}^{2}\right]}^{0.5}$$
$$\frac{\delta \mathrm{Re}}{Re}={\left[{{\left(8.18\times {10}^{-4}\right)}^{2}}+{{\left(7.43\times {10}^{-2}\right)}^{2}}+{{\left(9.34\times {10}^{-4}\right)}^{2}}+{{\left(5.042\times {10}^{-4}\right)}^{2}}\right]}^{0.5}$$
$$\frac{\delta \mathrm{Re}}{\mathrm{Re}}=0.0742$$

Hence, the uncertainty in Reynolds number is 7.42%.

Nusselt number

$$\mathrm{Nu}=\frac{h\mathrm{D}}{K}$$
$$\frac{\delta \mathrm{Nu}}{\mathrm{Nu}}={\left[{\left(\frac{\delta h}{h}\right)}^{2}+{\left(\frac{\delta D}{D}\right)}^{2}+{\left(\frac{\delta K}{K}\right)}^{2}\right]}^{0.5}$$
$$\frac{\delta \mathrm{Nu}}{\mathrm{Nu}}={\left[{\left(0.0283\right)}^{2}+{\left(0.000941\right)}^{2}+{\left(0.00527\right)}^{2}\right]}^{0.5}$$
$$\frac{\delta \mathrm{Nu}}{\mathrm{Nu}}=0.0287$$

Hence, uncertainty in the Nusselt number is 2.87%.

Friction factor

$$f=\frac{2{\left({\Delta }_{\text{p}}\right)}_{\text{d}}D}{4\rho L{V}^{2}}$$
$$\frac{\delta f}{f}={\left[{{\left(\frac{\delta V}{V}\right)}^{2}+{\left(\frac{\delta \rho }{\rho }\right)}^{2}+\left(\frac{\delta D}{D}\right)}^{2}+{\left(\frac{\delta L}{L}\right)}^{2}+{\left(\frac{\delta {\left({\Delta }_{\text{p}}\right)}_{\text{d}}}{{\left({\Delta }_{\text{p}}\right)}_{\text{d}}}\right)}^{2}\right]}^{0.5}$$
$$\frac{\delta f}{f}={\left[{\left(0.0742\right)}^{2}+{\left(0.000821\right)}^{2}+{\left(0.000939\right)}^{2}+{\left(0.0000667\right)}^{2}+{\left(0.00767\right)}^{2}\right]}^{0.5}$$
$$\frac{\delta f}{f}=0.0744$$

Hence, uncertainty in the friction factor is 7.45%.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahuguna, R., Mer, K.K.S., Kumar, M. et al. Thermal performance of a circular tube embedded with TBVG inserts: an experimental study. J Therm Anal Calorim 147, 11373–11389 (2022). https://doi.org/10.1007/s10973-022-11352-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11352-1

Keywords

Navigation