Skip to main content
Log in

Insight into thermodynamic process and dry preparation of lanthanum fluoride

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

As an important functional material, lanthanum fluoride (denoted as LaF3) shows promising application in infrared thermometry, infrared thermography and fluoride glass optical fiber, etc. Although great process has been obtained in preparing rare earth fluorides such as GdF3, YF3, and NdF3, the thermodynamic process and synthesis of LaF3 remain a challenge. Herein, the thermodynamic process is explored by theoretical calculation and cxs \(\Delta_{{\text{r}}} H\) <0, \(\Delta_{{\text{r}}} G\) <0, \(K_{{\text{p}}}\) >109, indicating that the whole fluorination reaction is an exothermic reaction and can be fully carried out. Moreover, we now report an optimum fluorination process of LaF3. By exploring the effects of reaction temperature, holding time, material layer thickness and HF gas flow on fluorination rate k, the reliability of theoretical calculation has been verified, the best fluorination parameters have been obtained and the fluorination rate can reach more than 97%. This work may shed some light on the large-scale industrial production of high-grade LaF3, and promote its applications in infrared optical field, nuclear medicine and high-energy physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Haijuan Cheng XY, Peng Lang, Qunyan Pu, Cai Yi, Li M, Yang W, Bai Y, Zhao J, Wang L. LaF3-ZnS–Ge high-durability MWIR antireflective film on Ge substrate. Infrared Laser Eng. 2019;48(11):117001.

    Article  Google Scholar 

  2. Haijuan Cheng WY, Cai Yi, Xiaohui Y, Li R, Wang K, Zhao J, Wang L. High-performance LEIR antireflective films fabrication on Ge substrate using LaF3 as low refractive index material. Infrared Technol. 2020;42(8):758–62.

    Article  Google Scholar 

  3. Yinnan Feng YH, Liu J, Chen L, Wei J, Li C. Research process of rare earth infrared anti-reflection films. Chin J Rare Metals. 2019;43(12):1346–56.

    Google Scholar 

  4. Li B, Xie P, Su W, Ma X, Luo H, Liu D. Combinatorial synthesis of BaClF-ReF 3 (Re=La, Pr, Er, Sm) layers with graded-index as antireflection coatings in the thermal infrared. Mater Design. 2016;107:302–10.

    Article  CAS  Google Scholar 

  5. Cai XY, Wang Y, Li JF, Zhu ZJ, Tu CY. Spectral analyses of Dy3+/Sr2+: LaF3 and Dy3+/Ca2+: LaF3 mixed crystals for laser applications. Spectrochim Acta Part A Mol Biomol Spectrosc. 2020;250:119341.

    Article  Google Scholar 

  6. Lo AYH, Sudarsan V, Sivakumar S, Veggel FV, Schurko RW. Multinuclear solid-state NMR spectroscopy of doped lanthanum fluoride nanoparticles. J Am Chem Soc. 2007;129(15):4687–700.

    Article  CAS  Google Scholar 

  7. Semashko VV, Pudovkin MS, Cefalas AC, Zelenikhin PV, Sarantopoulou E. Tiny rare-earth fluoride nanoparticles activate tumour cell growth via electrical polar interactions. Nanoscale Res Lett. 2018. https://doi.org/10.1186/s11671-018-2775-z.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ewing KJ, Buckner L, Jaganathan J, Ginther R, Aggarwal ID. Preparation of high purity lanthanum compounds for use in fluoride optical fibers - sciencedirect. Mater Res Bull. 1989;24(2):163–8.

    Article  CAS  Google Scholar 

  9. Środa M. Effect of LaF3 admixture on thermal stability of borosilicate glasses. J Therm Anal Calorim. 2007;88(1):245–9.

    Article  Google Scholar 

  10. Parshin SG. Metallurgical effect of rare-earth lanthanum fluoride and boride in the composite coating of wires in the arc welding of bainitic-martensitic and austenitic steel. Metals - Open Access Metall J. 2020;10(10):1334.

    CAS  Google Scholar 

  11. Massot L, Gibilaro M, Nicaise J, Chamelot P. Electrochemical behaviour of Lanthanum fluoride and Praseodymium fluoride on inert and reactive electrodes in molten LiF–CaF2. J Fluorine Chem. 2021;246:109797.

    Article  CAS  Google Scholar 

  12. Siming Pang SY, Li Z, Chen D, Lihai X, Zhao B. Development on molten salt electrolytic methods and technology for preparing rare earth metals and alloys in China. Chin J Rare Metals. 2011;35(3):440–8.

    Google Scholar 

  13. Yi Liu HC, Wei W. Technology of Xeransis fluorination for preparing high purity scandium fluoride. Hunan Nonferrous Metals. 2017;33(1):53–7.

    Google Scholar 

  14. Jianping Wang JH, Ye J. Study on preparation technology of lanthanum fluoride. Henan Chem Ind. 2019;39(02):29–33.

    Google Scholar 

  15. Longping Liu FL, Zhou W, Liu L, Li D. The new exploration of dry preparation of rare earth fluoride. Hunan Nonferrous Metals. 2015;31(4):61–2.

    Google Scholar 

  16. Minlai Li ZL, Zhu Z, Cui D, Peng X, Zhao N, Cui M, Huang X. Hydro-Fluorination synthesis of lanthanum fluoride using lanthanum hydroxide as raw materials. Chin J Rare Metals. 2006;30(3):348–52.

    Google Scholar 

  17. Yajun Wang QL, Suo Q, Hao D, Guo F. Precipitation method and component of rare earth fluoride. Chin Rare Earths. 2000;21(1):14–8.

    Google Scholar 

  18. Zhanzhong Hao BW, Zhang H. Preparation of hypoxia gadolinium fluoride with fixed-bed gas fluorination method. Chin Rare Earths. 2013;34(5):16–21.

    Google Scholar 

  19. Zhanzhong Hao JZ, Wang B, Zhang X. Synthesis of GdF3 from the Gd2O3–NH4HF2 system. Rare Metals. 2007;26(5):482–7.

    Article  Google Scholar 

  20. Zuping Yin JJ, Liu Y. Thermodynamic calculations and experiments for preparation of neodymium fluoride with hydrogen fluoride. Sci Technol Baotou Steel. 2010;36(1):32–5.

    Google Scholar 

  21. Junyong Zhao XL, Dawei Wang, Zuping Yin, Yunyi Liu. Research on neodymium oxide fluorination by fluidized bed. Chem Eng 2010;314–18.

  22. Mukherjee A, Awasthi A, Mishra S, Krishnamurthy N. Studies on fluorination of Y2O3 by NH4HF2. Thermochim Acta. 2011;520(1–2):145–52.

    Article  CAS  Google Scholar 

  23. Duan Y, Yu Y, Wang L, Zhao S. Dual-emission LaF3:Tb@DPA-Eu nanoparticles as a ratiometric fluorescence probe for the detection of marbofloxacin. Microchem J. 2021;168:106469.

    Article  CAS  Google Scholar 

  24. Yanes AC, Mirabal-Bello P, Del-Castillo J. Enhanced and tuneable green and red emissions in RE3+ doped LaF3 nanocrystals. J Alloys Compd. 2020;856:157183.

    Article  Google Scholar 

  25. Deshmukh P, Deo RK, Ahlawat A, Khan AA, Satapathy S. Spectroscopic investigation of upconversion and downshifting properties LaF3:Tb3+, Yb3+: a dual mode green emitter nanophosphor. J Alloys Compd. 2020;859:157857.

    Article  Google Scholar 

  26. Huang P, Luo P, Zhou B, Wang L, Jiang W. Preparation and luminescence of transparent silica glass-ceramics containing LaF3:Eu3+ nanocrystals. Materials Letters. 2020;271:127764.

    Article  CAS  Google Scholar 

  27. Cruz ME, Durán A, Balda R, Fernández J, Mather GC, Castro Y. A new sol–gel route towards Nd3+-doped SiO2–LaF3 glass-ceramics for photonic applications. Mater Adv. 2020;1:3589–96.

    Article  CAS  Google Scholar 

  28. Tolstoy VP, Danilov DV, et al. Formation of oriented LaF3 and LaF3:Eu3+ nanocrystals at the gas - Solution interface. J Fluorine Chem. 2017;200:18–23.

    Article  Google Scholar 

  29. Pawlik N, Szpikowska-Sroka B, Goryczka T, Pisarski WA. Studies of sol–gel evolution and distribution of Eu3+ ions in glass-ceramics containing LaF3 nanocrystals depending on initial sols composition. Int J Mol Sci. 2021;22(3):996.

    Article  CAS  Google Scholar 

  30. Ansari AA, Parchur AK, Labis JP, Shar MA. Physiochemical characterization of highly biocompatible, and colloidal LaF3:Yb/Er upconversion nanoparticles. Photochem Photobiol Sci. 2021;44:1–14.

    Google Scholar 

Download references

Acknowledgements

This study is financially supported by the Aero Engine and Gas Turbine Major Project (J2019-VI-0023-0140) and Key R & D Plan of Hebei Province (19211503D). Engineer W. L. Lu is supported by Youth Talent Lifts plan of Grinm Group Co., Ltd. (0111970400364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34876 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, R., Lu, W., Chen, D. et al. Insight into thermodynamic process and dry preparation of lanthanum fluoride. J Therm Anal Calorim 147, 11433–11443 (2022). https://doi.org/10.1007/s10973-022-11349-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11349-w

Keywords

Navigation