Skip to main content
Log in

Hydration and microstructure evolution of recycled clay brick powder-cement composite cementitious materials

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Recycled clay brick powder (RCBP) was used to replace partially cement to prepare composite cementitious materials, and the hydration kinetics and microstructure evolution of the composite cementitious materials were investigated by measuring the types of hydration products, hydration heat and microstructure. The results show that RCBP has little effect on the types of hydration products. However, at the later stage of cement hydration, the pozzolanic reaction occurs between RCBP and Ca(OH)2. Meanwhile, RCBP promotes the dispersion and dissolution of cement and provides many nucleation sites for C–S–H gel, increases the effective water-binder ratio and accelerates the heat release of cement hydration, however, the cumulative heat release decreases with the dosage of RCBP. In addition, RCBP can increase porosity at early stage of hydration, but the pozzolanic reaction between RCBP and Ca(OH)2 at the later stage of hydration would produce more hydration products, filling the pores, refining the pore diameter and improving the pore structure. Furthermore, RCBP affects the formation and microstructure of C–(A)–S–H gel, and promotes the formation of spherical C–(A)–S–H gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shen W, Liu Y, Yan B, et al. Cement industry of China: driving force, environment impact and sustainable development. Renew Sust Energ Rev. 2017;75:618–28. https://doi.org/10.1016/j.rser.2016.11.033.

    Article  CAS  Google Scholar 

  2. Zhang C, Yu B, Chen J, et al. Green transition pathways for cement industry in China. Resour Conserv Recy. 2021;166: 105355. https://doi.org/10.1016/j.resconrec.2020.105355.

    Article  CAS  Google Scholar 

  3. Schneider M, Romer M, Tschudin M, et al. Sustainable cement production—present and future. Cem Concr Res. 2011;41:642–50. https://doi.org/10.1016/j.cemconres.2011.03.019.

    Article  CAS  Google Scholar 

  4. Ding T, Xiao J. Estimation of building-related construction and demolition waste in Shanghai. Waste Mange. 2014;34:2327–34. https://doi.org/10.1016/j.wasman.2014.07.029.

    Article  Google Scholar 

  5. Levy SM, Helene P. Durability of recycled aggregates concrete: a safe way to sustainable development. Ceme Concr Res. 2004;34:1975–80. https://doi.org/10.1016/j.cemconres.2004.02.009.

    Article  CAS  Google Scholar 

  6. Pappu A, Saxena M, Asolekar SR. Solid wastes generation in India and their recycling potential in building materials. Build Environ. 2007;42:2311–20. https://doi.org/10.1016/j.buildenv.2006.04.015.

    Article  Google Scholar 

  7. Tang D, Zhang X, Hu S, et al. The reuse of red brick powder as a filler in styrene-butadiene rubber. J Clean Prod. 2020;61: 120966. https://doi.org/10.1016/j.jclepro.2020.120966.

    Article  CAS  Google Scholar 

  8. Li LG, Lin ZH, Chen GM, et al. Reutilizing clay brick dust as paste substitution to produce environment-friendly durable mortar. J Clean Prod. 2020;274: 122787. https://doi.org/10.1016/j.jclepro.2020.122787.

    Article  CAS  Google Scholar 

  9. Shao J, Zhao Y, Chen X. Study on the pozzolanic reaction of clay brick powder in blended cement pastes. Constr Build Mater. 2019;213:209–15. https://doi.org/10.1016/j.conbuildmat.2019.03.307.

    Article  CAS  Google Scholar 

  10. He Z, Shen A, Wu H. Research progress on recycled clay brick waste as an alternative to cement for sustainable construction materials. Constr Build Mater. 2021;274: 122113. https://doi.org/10.1016/j.conbuildmat.2020.122113.

    Article  CAS  Google Scholar 

  11. Amakye SY, Abbey SJ, Olubanwo AO. Consistency and mechanical properties of sustainable concrete blended with brick dust waste cementitious materials. SN Appl Sci. 2021. https://doi.org/10.1007/s42452-021-04430-w.

    Article  Google Scholar 

  12. Surya Narayana Raju JNS, Srikanth Reddy S, Raju P, et al. Red brick dust as a partial substitute to cement in conventional concrete. IJRTE. 2019;8:5632–5. https://doi.org/10.35940/ijrte.B1768.078219.

    Article  Google Scholar 

  13. Lin KL, Wu HH, Shie JL, et al. Recycling waste brick from construction and demolition of buildings as pozzolanic materials. Waste Manag Res. 2010;28:653–9. https://doi.org/10.1177/0734242X09358735.

    Article  CAS  PubMed  Google Scholar 

  14. Ouyang X, Wang L, Jiyang Fu. Surface properties of clay brick powder and its influence on hydration and strength development of cement paste. Constr Build Mater. 2021;300: 123958. https://doi.org/10.1016/j.conbuildmat.2021.123958.

    Article  CAS  Google Scholar 

  15. Shao J, Gao J, Zhao Y. Characteristics of recycled clay brick powder-cement cementitious system. J Southeast Univ (Natural Science Edition). 2019;49:375–9. https://doi.org/10.3969/j.issn.1001-0505.2019.02.025.

    Article  Google Scholar 

  16. Letelier V, Tarela E, Moriconi G. Mechanical properties of concretes with recycled aggregates and waste brick powder as cement replacement. Proc Eng. 2017;171:627–32. https://doi.org/10.1016/j.proeng.2017.01.396.

    Article  Google Scholar 

  17. Lin R, Lee H, Han Y. Experimental studies on hydration–strength–durability of limestone-cement-calcined Hwangtoh clay ternary composite. Constr Build Mater. 2021;269:1290. https://doi.org/10.1016/j.conbuildmat.2020.121290.

    Article  CAS  Google Scholar 

  18. Linderoth O, Wadsö L, Jansen D. Long-term cement hydration studies with isothermal calorimetry. Cem Concr Res. 2021;141: 106344. https://doi.org/10.1016/j.cemconres.2020.106344.

    Article  CAS  Google Scholar 

  19. Gao X, Yu QL, Brouwers HJH. Properties of alkali activated slag–fly ash blends with limestone addition. Cem Concr Compos. 2015;59:119–28. https://doi.org/10.1016/j.cemconcomp.2015.01.007.

    Article  CAS  Google Scholar 

  20. Lura P, Winnefeld F, Klemm S. Simultaneous measurements of heat of hydration and chemical shrinkage on hardening cement pastes. J Therm Anal Calorim. 2010;101:925–32. https://doi.org/10.1007/s10973-009-0586-2.

    Article  CAS  Google Scholar 

  21. Kırgız MS. Strength gain mechanism for green mortar substituted marble powder and brick powder for Portland cement. Eur J Environ Civ En. 2016;20:38–63. https://doi.org/10.1080/19648189.2016.1246691.

    Article  Google Scholar 

  22. Gutteridge WA, Dalziel JA. Filler cement: the effect of the secondary component on the hydration of Portland cement: part I. A fine non-hydraulic filler. Cem Concr Res. 1990;20:778–82. https://doi.org/10.1016/0008-8846(90)90011-L.

    Article  CAS  Google Scholar 

  23. Castellano CC, Bonavetti VL, Donza HA, et al. The effect of w/b and temperature on the hydration and strength of blast furnace slag cements. Constr Build Mater. 2016;111:679–88. https://doi.org/10.1016/j.conbuildmat.2015.11.001.

    Article  CAS  Google Scholar 

  24. Berodier E, Scrivener KL. Understanding the filler effect on the nucleation and growth of C-S–H. J Am Ceram Soc. 2014;97:3764–73. https://doi.org/10.1111/jace.13177.

    Article  CAS  Google Scholar 

  25. He X, Zheng Z, Ma M, et al. New treatment technology: the use of wet-milling concrete slurry waste to substitute cement. J Clean Prod. 2020;242: 118347. https://doi.org/10.1016/j.jclepro.2019.118347.

    Article  Google Scholar 

  26. Bullard JW, Jennings HM, Livingston RA, et al. Mechanisms of cement hydration. Cem Concr Res. 2011;41:1208–23. https://doi.org/10.1016/j.cemconres.2010.09.011.

    Article  CAS  Google Scholar 

  27. Lura P, Winnefeld F, Fang X. A simple method for determining the total amount of physically and chemically bound water of different cements. J Therm Anal Calorim. 2017;130:653–60. https://doi.org/10.1007/s10973-017-6513-z.

    Article  CAS  Google Scholar 

  28. Zhang T, Sun Z, Yang H, et al. Enhancement of triisopropanolamine on the compressive strength development of cement paste incorporated with high content of wasted clay brick powder and its working mechanism. Constr Build Mater. 2021;302: 124052. https://doi.org/10.1016/j.conbuildmat.2021.124052.

    Article  CAS  Google Scholar 

  29. Mendes A, Gates WP, Sanjaya JG, et al. NMR, XRD, IR and synchrotron NEXAFS spectroscopic studies of OPC and OPC/slag cement paste hydrates. Mater Struct. 2011;44:1773–91. https://doi.org/10.1617/s11527-011-9737-6.

    Article  CAS  Google Scholar 

  30. Chung S, Kim J, Lehmann C, et al. Investigation of phase composition and microstructure of foamed cement paste with different supplementary cementing materials. Cem Concr Compos. 2020;109: 103560. https://doi.org/10.1016/j.cemconcomp.2020.103560.

    Article  CAS  Google Scholar 

  31. Yan P, Qin X. The effect of expansive agent and possibility of delayed ettringite formation in shrinkage-compensating massive concrete. Cem Concr Res. 2001;31:335–7. https://doi.org/10.1016/S0008-8846(00)00453-1.

    Article  CAS  Google Scholar 

  32. Wu J, Guo L, Qin Y. Preparation and characterization of ultra-high-strength and ultra-high-ductility cementitious composites incorporating waste clay brick powder. J Clean Prod. 2021;312: 127813. https://doi.org/10.1016/j.jclepro.2021.127813.

    Article  Google Scholar 

  33. Guo X, Shi H, Wei X. Pore properties, inner chemical environment, and microstructure of nano-modified CFA-WBP (class C fly ash-waste brick powder) based geopolymers. Cem Concr Compos. 2017;79:53–61. https://doi.org/10.1016/j.cemconcomp.2017.01.007.

    Article  CAS  Google Scholar 

  34. Fořt J, Vejmelková E, Koňáková D, et al. Application of waste brick powder in alkali activated aluminosilicates: functional and environmental aspect. J Clean Prod. 2018;194:714–25. https://doi.org/10.1016/j.jclepro.2018.05.181.

    Article  CAS  Google Scholar 

  35. Wong CL, Mo KH, Yap SP, et al. Potential use of brick waste as alternate concrete-making materials: a review. J Clean Prod. 2018;195:226–39. https://doi.org/10.1016/j.jclepro.2018.05.193.

    Article  Google Scholar 

  36. Rovnaník P, Rovnaníková P, Vyšvařil M, et al. Rheological properties and microstructure of binary waste red brick powder/metakaolin geopolymer. Constr Build Mater. 2018;188:924–33. https://doi.org/10.1016/j.conbuildmat.2018.08.150.

    Article  CAS  Google Scholar 

  37. Davraz M, Ceylan H, Topçu İB, et al. Pozzolanic effect of andesite waste powder on mechanical properties of high strength concrete. Constr Build Mater. 2018;16:5494–503. https://doi.org/10.1016/j.conbuildmat.2018.01.043.

    Article  CAS  Google Scholar 

  38. Karen L. Scrivener, André Nonat, Hydration of cementitious materials, present and future. Cement Concr Res. 2011;41(7):651–65. https://doi.org/10.1016/j.cemconres.2011.03.026.

    Article  CAS  Google Scholar 

  39. Ma Z, Tang Q, Wu H, et al. Mechanical properties and water absorption of cement composites with various fineness and contents of waste brick powder from C&D waste. Cem Concr Compos. 2020;114: 103758. https://doi.org/10.1016/j.cemconcomp.2020.103758.

    Article  CAS  Google Scholar 

  40. Zou F, Hu C, Wang F, et al. Enhancement of early-age strength of the high content fly ash blended cement paste by sodium sulfate and C–S–H seeds towards a greener binder. J Clean Prod. 2020;244: 118566. https://doi.org/10.1016/j.jclepro.2019.118566.

    Article  CAS  Google Scholar 

  41. Böke H, Akkurt S, İpekoğlu B, et al. Characteristics of brick used as aggregate in historic brick-lime mortars and plasters. Cem Concr Res. 2006;36:1115–22. https://doi.org/10.1016/j.cemconres.2006.03.011.

    Article  CAS  Google Scholar 

  42. Zhang J, Scherer GW. Comparison of methods for arresting hydration of cement. Cem Concr Res. 2011;41:1024–36. https://doi.org/10.1016/j.cemconres.2011.06.003.

    Article  CAS  Google Scholar 

  43. Afroughsabet V, Biolzi L, Monteiro PJM, et al. Investigation of the mechanical and durability properties of sustainable high performance concrete based on calcium sulfoaluminate cement. J Build Eng. 2021;43:102–656. https://doi.org/10.1016/j.jobe.2021.102656.

    Article  Google Scholar 

  44. Zhao Y, Gao J, Xu Z, et al. Combined effect of slag and clay brick powder on the hydration of blended cement. Constr Build Mater. 2021;299: 123996. https://doi.org/10.1016/j.conbuildmat.2021.123996.

    Article  CAS  Google Scholar 

  45. Zhao Y, Gao J, Liu C, et al. The particle-size effect of waste clay brick powder on its pozzolanic activity and properties of blended cement. J Clean Prod. 2020;242: 118521. https://doi.org/10.1016/j.jclepro.2019.118521.

    Article  CAS  Google Scholar 

  46. Hernandez N, Lizarazo-Marriaga J, Rivas MA. Petrographic characterization of Portlandite crystal sizes in cement pastes affected by different hydration environments. Constr Build Mater. 2018;182:541–9. https://doi.org/10.1016/j.conbuildmat.2018.06.142.

    Article  CAS  Google Scholar 

  47. Sun Z, Liu F, Tong T, et al. Hydration of concrete containing hybrid recycled demolition powders. J Mater Civil Eng. 2017;29:04017037. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001842.

    Article  Google Scholar 

  48. Zhao Y, Gao J, Xu Z, et al. Long-term hydration and microstructure evolution of blended cement containing ground granulated blast furnace slag and waste clay brick. Cem Concr Compos. 2021;118: 103982. https://doi.org/10.1016/j.cemconcomp.2021.103982.

    Article  CAS  Google Scholar 

  49. Chen G, Gao J, Zhao Y. Research on properties of recycled clay brick powder-limestone powder-cement cementitious material. J Southeast Univ (Natural Science Edition). 2020;50:858–65. https://doi.org/10.3969/j.issn.1001-0505.2020.05.010.

    Article  Google Scholar 

  50. Cui S, Liu P, Cui E, et al. Experimental study on mechanical property and pore structure of concrete for shotcrete use in a hot-dry environment of high geothermal tunnels. Constr Build Mater. 2018;173:124–35. https://doi.org/10.1016/j.conbuildmat.2018.03.191.

    Article  CAS  Google Scholar 

  51. Martínez-García C, González-Fonteboa B, Carro-López D, et al. Impact of mussel shell aggregates on air lime mortars Pore structure and carbonation. J Clean Prod. 2019;215:650–68. https://doi.org/10.1016/j.jclepro.2019.01.121.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors deeply appreciate the financial support provided by the National Natural Science Foundation of China (No. 51578141) and the Jiangsu Key Laboratory of Construction Materials for technical support.

Author information

Authors and Affiliations

Authors

Contributions

XL: Conceptualization, Methodology, Funding acquisition, Resources, Investigation, Writing—review & editing. JG: Investigation. XL: Conceptualization, Investigation. SL: Investigation, Writing—review & editing. YZ: Writing– review & editing.

Corresponding author

Correspondence to Jianming Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Gao, J., Liu, X. et al. Hydration and microstructure evolution of recycled clay brick powder-cement composite cementitious materials. J Therm Anal Calorim 147, 10977–10989 (2022). https://doi.org/10.1007/s10973-022-11343-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11343-2

Keywords

Navigation