Skip to main content
Log in

Metamorphic response characteristics of yellow sandstone after heat treatment under 800–1250 °C

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Coal, geothermal and nuclear energy have always gained attention as important factors affecting the environment. In order to understand the impact of the high temperature generated before and after the development and utilization of these resources on the properties of the surrounding rock, a high-temperature thermal damage metamorphism mechanism test study was conducted for the yellow sandstone, which was widely distributed in the formation. The yellow sandstone was heated under 800–1250 °C. From the changes in thermal conductivity, longitudinal wave velocity (VP) and intensity, combined with scanning electron microscope (SEM) images, and magnetic susceptibility, the yellow sandstone showed different degrees of changes at high temperatures. The results showed that the main influence on lithology is the metamorphism caused by high temperatures after 800 °C. Under different temperatures, the changes ratio of primary minerals and melts is different, leading to inconsistent variation in the characteristic properties. This phenomenon was most prominent as the temperature was in the range of 1000–1200 °C. Under the studied temperature range, the performance of yellow sandstone gradually decreased, and the thermal damage and degree of metamorphism increased gradually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu QS, Xu JC. Damage analysis of brittle rock at high temperature. Chin J Rock Mech Eng. 2000;4:408–11. https://doi.org/10.3321/j.issn:1000-6915.2000.04.002.

    Article  Google Scholar 

  2. Yavuz H, Demirdag S, Caran S. Thermal effect on the physical properties of carbonate rocks. 2010;47(1):94–103. https://doi.org/10.1016/j.ijrmms.2009.09.014.3.

    Article  Google Scholar 

  3. Zhang H, Sun Q, Geng J, Jia HL. Effect of high temperature on physical properties of yellow sandstone. Heat Mass Transf. 2021. https://doi.org/10.1007/s00231-021-03088-9.

    Article  Google Scholar 

  4. Zhang H, Sun Q, Jia HL, Dong ZH, Luo T. Effects of high-temperature thermal treatment on the porosity of red sandstone: an NMR analysis. Acta Geophys. 2021;69:113–24. https://doi.org/10.1007/s11600-020-00526-w.

    Article  Google Scholar 

  5. Malaga-Starzec K, Åkesson U, Lindqvist JE, Schouenborg B. Microscopic and macroscopic characterization of the porosity of marble as a function of temperature and impregnation. 2006;20(10):939–47. https://doi.org/10.1016/j.conbuildmat.2005.06.016.

    Article  Google Scholar 

  6. Somerton WH. Thermal properties and temperature-related behavior of rock/fluid systems. Amsterdam: Elsevier; 1992.

    Google Scholar 

  7. Hartlieb P, Toifl M, Kuchar F, Meisels R, Antretter T. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution. Miner Eng. 2016;91:34–41. https://doi.org/10.1016/j.mineng.2015.11.008.

    Article  CAS  Google Scholar 

  8. Wu G, Wang Y, Swift G, Chen J. Laboratory investigation of the effects of temperature on the mechanical properties of sandstone. Geotech Geol Eng. 2013;31(2):809–16. https://doi.org/10.1007/s10706-013-9614-x.

    Article  Google Scholar 

  9. Tydlitát V, Trník A, Scheinherrová L, Podoba R, Černý R. Application of isothermal calorimetry and thermal analysis for the investigation of calcined gypsum–lime–metakaolin–water system. J Therm Anal Calorim. 2015;122(1):115–22. https://doi.org/10.1007/s10973-015-4727-5.

    Article  CAS  Google Scholar 

  10. Dong ZH, Sun Q, Ranjith PG. Surface properties of grayish-yellow sandstone after thermal shock. Environ Earth Sci. 2019. https://doi.org/10.1007/s12665-019-8451-5.

    Article  Google Scholar 

  11. Kömle NI, Hütter ES, Macher W, Kaufmann E, Kargl G, Knollenberg J, Grott M, Spohn T, Wawrzaszek R, Banaszkiewicz M, Seweryn K, Hagermann A. In situ methods for measuring thermal properties and heat flux on planetary bodies. Planet Space Sci. 2011;59(8):639–60. https://doi.org/10.1016/j.pss.2011.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gray AS, Uher CJ. Thermal conductivity of mica at low temperatures. J Mater Sci. 1977;12:959–65. https://doi.org/10.1007/BF00540978.

    Article  CAS  Google Scholar 

  13. Hofmeister AM, Carpenter PK. Heat transport in micas. Can Mineral. 2015;53(3):557–70. https://doi.org/10.3749/canmin.1400093.

    Article  CAS  Google Scholar 

  14. Anil M, Bryan B, Brian F. A theoretical model of the thermal conductivity of idealized soil. HVAC&R Research. 1995;1(1):81–96. https://doi.org/10.1080/10789669.1995.10391310.

    Article  Google Scholar 

  15. Clauser C, Huenges E. Thermal conductivity of rocks and minerals. Washington: American Geophysical Union; 1995.

    Book  Google Scholar 

  16. Log T, Gustafsson SE. Transient plane source (TPS) technique for measuring thermal transport properties of building materials. Fire Mater. 1995;19(1):43–9. https://doi.org/10.1002/fam.810190107.

    Article  CAS  Google Scholar 

  17. Małgorzata L, Krzysztof L. Thermal conductivity and diffusivity of fine-grained sedimentary rocks. J Therm Anal Calorim. 2018;132:1669–76. https://doi.org/10.1007/s10973-018-7090-5.

    Article  CAS  Google Scholar 

  18. Radhakrishna HS, Chan HT, Crawford AM, Lau KC. Thermal and physical properties of candidate buffer–backfill materials for a nuclear fuel waste disposal vault. Can Geotech J. 1989;26(4):629–39. https://doi.org/10.1139/t89-076.

    Article  CAS  Google Scholar 

  19. Blackwell D, Steele J. Heat flow and geothermal potential of Kansas. Nasa Sti/recon Technical Report N. 1989. https://doi.org/10.2172/6760835.

    Article  Google Scholar 

  20. William M, Andrew R, Kai H. Modulus decomposition of compressional and shear velocities in sand bodies. Geophysics. 1993;58(2):227–39. https://doi.org/10.1190/1.1443408.

    Article  Google Scholar 

  21. Hu JJ, Xie HP, Sun Q, Li CB, Liu GK. Changes in the thermodynamic properties of alkaline granite after cyclic quenching following high temperature action. Int J Mining Sci Technol 2021;31(5): 843–52. https://doi.org/10.1016/j.ijmst.2021.07.010

    Article  CAS  Google Scholar 

  22. Hu XD, Song XZ, Liu Y, Cheng Z, Ji JY, Shen ZH. Experiment investigation of granite damage under the high-temperature and high-pressure supercritical water condition-ScienceDirect. J Petrol Sci Eng. 2019;180:289–97. https://doi.org/10.1016/j.petrol.2019.05.031.

    Article  CAS  Google Scholar 

  23. Liu S, Xu JY. An experimental study on the physical-mechanical properties of two post-high-temperature rocks. Eng Geol. 2015. https://doi.org/10.1016/j.enggeo.2014.11.013.

    Article  Google Scholar 

  24. Pickett GR. Acoustic character logs and their applications in formation evaluation. J Petrol Technol. 1963;15(6):659–67. https://doi.org/10.2118/452-PA.

    Article  Google Scholar 

  25. Sygała A, Bukowska M, Janoszek T. High temperature versus geomechanical parameters of selected rocks – the present state of research. J Sustainable Mining. 2013;12(4):45–51. https://doi.org/10.7424/jsm130407.

    Article  Google Scholar 

  26. Sirdesai NN, Singh TN, Ranjith PG, Singh R. Effect of varied durations of thermal treatment on the tensile strength of red sandstone. Rock Mech Rock Eng. 2017;50(1):1–9. https://doi.org/10.1007/s00603-016-1047-4.

    Article  Google Scholar 

  27. Sun Q, Geng JS, Zhao F. Experiment study of physical and mechanical properties of sandstone after variable thermal cycles. Bull Engin Geol Environ. 2020. https://doi.org/10.1007/s10064-020-01779-x.

    Article  Google Scholar 

  28. Gustafsson SE, Karawacki E, Chohan MA. Thermal transport studies of electrically conducting materials using the transient hot-strip technique. J Phys D Appl Phys. 1986;19(5):727–35. https://doi.org/10.1088/0022-3727/19/5/007.

    Article  CAS  Google Scholar 

  29. Emirov SN, Ramazanova EN. Thermal conductivity of sandstone at high pressures and temperatures. High Temp. 2007;45(3):317–20. https://doi.org/10.1134/s0018151x07030066.

    Article  Google Scholar 

  30. Gustafsson SE. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum. 1991;62(3):797–804. https://doi.org/10.1063/1.1142087.

    Article  CAS  Google Scholar 

  31. Yan XS, Duan Z, Sun Q. Influences of water and salt contents on the thermal conductivity of loess. 2021. https://doi.org/10.1007/s12665-020-09335-2.

    Article  Google Scholar 

  32. Broch E, Franklin JA. The point-load strength test. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. 1972;9(6):669–76. https://doi.org/10.1016/0148-9062(72)90030-7.

    Article  Google Scholar 

  33. Wu XG, Huang ZW, Song HY, Zhang SK, Cheng Z, Li R, Wen HT, Huang PP, Dai XW. Variations of physical and mechanical properties of heated granite after rapid cooling with liquid nitrogen. Rock Mech Rock Eng. 2019. https://doi.org/10.1007/s00603-018-1727-3.

    Article  Google Scholar 

  34. Mahanta B, Ranjith PG, Vishal V, Singh TN. Temperature-induced deformational responses and microstructural alteration of sandstone. J Petroleum Sci Engin. 2020;192:107239. https://doi.org/10.1016/j.petrol.2020.107239.

    Article  CAS  Google Scholar 

  35. Zhang RR (2019) Study on Dynamic Mechanical Properties and Constitutive Model of Deep Rock under Hydrothermal Coupling. Anhui University of Science and Technology, Doctoral dissertation (In Chinese)

Download references

Acknowledgements

The authors acknowledge gratefully the financial support from the National Natural Science Foundation of China (Grant No. 41672279, 41972288).

Funding

This research was founded by the National Natural Science Foundation of China (Grant No. 41672279, 41972288).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript and the drawing of the diagram were completed by HZ, and all authors commented on the previous versions of the manuscript. Manuscript writing guidance, the first draft revision was completed by the corresponding author HZ and QS. ZG and ZD help analyze the data and provide theoretical support, and JD, YC, and Ziyu Wang help to complete the experiments of this study.

Corresponding authors

Correspondence to He Zhang or Qiang Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Sun, Q., Dong, Z. et al. Metamorphic response characteristics of yellow sandstone after heat treatment under 800–1250 °C. J Therm Anal Calorim 147, 11107–11117 (2022). https://doi.org/10.1007/s10973-022-11336-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11336-1

Keywords

Navigation