Skip to main content
Log in

Research on the pyrolysis of hexafluoropropane (HFC-236fa) fire extinguishing agent and decomposition mechanism

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Gas chromatography (GC), ion chromatography (IC), and gas chromatography–mass spectrometry were used to investigate the thermal degradation of hexafluoropropane (HFC-236fa) fire suppression agent between 500 and 850 °C (GC–MS). The results show that the pyrolysis characteristics of HFC-236fa can only occur when the temperature is above 600 °C. The gas products of HFC-236fa pyrolysis mainly contain CHF3, CF2 = CHF, CF3C ≡ CCF3, and (CF3)2C = CF2. The concentration of each component is different with different pyrolysis temperatures and residence times. Moreover, the possible decomposition mechanism of HFC-236fa was proposed based on density functional theory, which was achieved via obtaining the activation energy and the details of dissociation pathways. By under the experimental studies and theoretical calculation, the pyrolysis of HFC-236fa was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Lovelock JE. Atmospheric halocarbons and stratospheric ozone. Nature. 1974;252(5481):292–4. https://doi.org/10.1038/252292a0.

    Article  CAS  Google Scholar 

  2. Safiuddin M, Sarbatly R. Global ozone depletion: causes, effects and preventive measures. Borneo Sci. 2001;10:73–89.

    Google Scholar 

  3. DiNenno PJ, Harrington JL. Halon alternative protection options. The Report on Proposals for the 1999 Spring Meedng. 2001;580–614.

  4. Rubenstein R. Human health and environmental toxicity issues for evaluation of halon replacements. Toxicol Lett. 1993;68(1–2):21–4. https://doi.org/10.1016/0378-4274(93)90114-D.

    Article  CAS  PubMed  Google Scholar 

  5. Wallington TJ, Schneider WF, Worsnop DR, et al. The environmental impact of CFC replacements HFCs and HCFCs. Environ Sci Technol. 1994;28(7):320A-A326. https://doi.org/10.1021/es00056a714.

    Article  CAS  PubMed  Google Scholar 

  6. Tsai WT. An overview of environmental hazards and exposure risk of hydrofluorocarbons (HFCs). Chemosphere. 2005;61(11):1539–47. https://doi.org/10.1016/j.chemosphere.2005.03.084.

    Article  CAS  PubMed  Google Scholar 

  7. Powell RL. CFC phase-out: Have we met the challenge? J Fluorine Chem. 2002;114(2):237–50. https://doi.org/10.1016/S0022-1139(02)00030-1.

    Article  CAS  Google Scholar 

  8. Trochimowicz HJ. Industrial research on alternative fluorocarbons. Toxicol Lett. 1993;68(1):25–30. https://doi.org/10.1016/0378-4274(93)90115-E

    Article  CAS  Google Scholar 

  9. Nappa MJ, Sievert AC. Process for the manufacture of 1, 1, 1, 3, 3, 3,-hexafluoropropane.U.S. Patent 5,414,165. 1995.

  10. Vinegar A, Buttler GW, Caracci MC et al. Gas Uptake Kinetics of 1, 1, 1, 3, 3, 3-Hexafluoropropane (HFC-236fa) and Identification of its Potential Metabolites. Geo-Centers Inc Newton Centre MA,1995.

  11. Rao V, Sievert A, Miller R. Noncatalytic manufacture of 1, 1, 3, 3, 3-pentafluoropropene from 1, 1, 1, 3, 3, 3-hexafluoropropane. U.S. Patent 11/259,901.2006.

  12. Vollmer MK, Miller BR, Rigby M, et al. Atmospheric histories and global emissions of the anthropogenic hydrofluorocarbons HFC-365mfc, HFC-245fa, HFC-227ea, and HFC-236fa. J Geophys Res. 2011. https://doi.org/10.1029/2010JD015309.

    Article  Google Scholar 

  13. Borghhetti L, Chaer S, Ferguson D, et al. Options for aircraft engine fire protection. WA: International aircraft system fire protection working group, 2000.

  14. Copeland G, Lee EPF, Dyke JM, et al. Study of pentafluoroethane and its thermal decomposition using UV photoelectron spectroscopy and ab initio molecular orbital calculations. J Phys Chem A. 2010;114(4):1816–25. https://doi.org/10.1021/jp909681s.

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi K, Harada A, Horigome S, et al. Thermal decompositons of 1, 1, 1-trifluoroethane and pentafluoroethane in a turbulent flow reactor. Combust Sci Technol. 2007;179(7):1417–32. https://doi.org/10.1080/00102200601181962.

    Article  CAS  Google Scholar 

  16. Zhou X, Chen W, Chao M, et al. The study of thermal decomposition of 2-bromo-3, 3, 3-trifluoropropene and its fire-extinguishing mechanism. J Fluorine Chem. 2013;153:101–6. https://doi.org/10.1016/j.jfluchem.2013.05.008.

    Article  CAS  Google Scholar 

  17. Zhou X, Lu D, Chao M, et al. Experimental and theoretical studies on the thermal decomposition of 1, 1, 2, 2, 3, 3, 4-heptafluorocyclopentane. J Fluorine Chem. 2014;164:70–7. https://doi.org/10.1016/j.jfluchem.2014.04.007.

    Article  CAS  Google Scholar 

  18. Angelino G, Invernizzi C. Experimental investigation on the thermal stability of some new zero ODP refrigerants. Int J Refrig. 2003;26(1):51–8. https://doi.org/10.1016/S0140-7007(02)00023-3.

    Article  CAS  Google Scholar 

  19. Zhou XM, Zhou B, Chen T, et al. Pyrolysis process of 1, 1, 1, 3, 3, 3-Hexafluoropropane and its fire suppression mechanism. J Combust Sci Technol. 2011;5:05.

    CAS  Google Scholar 

  20. He B, Lei B, Zhao C, et al. Experimental study on the effects of different ratios of inert gas and hexafluoropropane (HFC-236fa) on coal combustion. Energy Sour Part A Recov Util Environ Effects. 2020. https://doi.org/10.1080/15567036.2020.1804015.

    Article  Google Scholar 

  21. Garland NL, Nelson HH. Temperature dependent kinetics of the reaction OH+ CF3CH2CF3. 1996;248(3–4): 296–300. https://doi.org/10.1016/0009-2614(95)01288-5.

  22. Gao H, Wang Y, Wan SQ, et al. Theoretical investigation of the hydrogen abstraction from CF3CH2CF3 by OH radicals, F, and Cl atoms: a dual-level direct dynamics study. J Mol Struct THEOCHEM. 2009. https://doi.org/10.1016/j.theochem.2009.07.024.

    Article  Google Scholar 

  23. Wang T, Hu Y, Zhang P, et al. Study on thermal decomposition properties and its decomposition mechanism of pentafluoroethane (HFC-125) fire extinguishing agent. J Fluorine Chem. 2016;190:48–55. https://doi.org/10.1016/j.jfluchem.2016.08.006.

    Article  CAS  Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865. https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  CAS  PubMed  Google Scholar 

  25. Delley B. From molecules to solids with the DMol3 approach. The J Chem Phys. 2000;113(18):7756–64. https://doi.org/10.1063/1.1316015.

    Article  CAS  Google Scholar 

  26. Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys. 1990;92(1):508–17. https://doi.org/10.1063/1.458452.

    Article  CAS  Google Scholar 

  27. Dolg M, Wedig U, Stoll H, et al. Energy-adjusted abinitio pseudopotentials for the first row transition elements. J Chem Phys. 1987;86(2):866–72. https://doi.org/10.1063/1.452288.

    Article  CAS  Google Scholar 

  28. Bergner A, Dolg M, Küchle W, et al. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol Phys. 1993;80(6):1431–41. https://doi.org/10.1080/00268979300103121.

    Article  CAS  Google Scholar 

  29. Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys. 2000;113(22):9978–85. https://doi.org/10.1063/1.1323224.

    Article  CAS  Google Scholar 

  30. Halgren TA, Lipscomb WN. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem Phys Lett. 1977;49(2):225–32. https://doi.org/10.1016/0009-2614(77)80574-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Scientific Research Project of Jiangsu Police Institute of China (Grant No. 2017SJYZZ04), Key Laboratory of Fire & Rescue Technology and Equipment,Ministry of Emergency Management (Grant No. 2020XFZB06), the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the collaborative Innovation Center of Social Safety Science and Technology. The authors are also appreciated for the full support from Pine Ridge Laboratory of Advanced Materials, Sichuan Easy Scientific Research Community Technology Co., Ltd., Mianyang 621050, Sichuan, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-ming Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, P. & Pan, Rm. Research on the pyrolysis of hexafluoropropane (HFC-236fa) fire extinguishing agent and decomposition mechanism. J Therm Anal Calorim 147, 11591–11599 (2022). https://doi.org/10.1007/s10973-022-11331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11331-6

Keywords

Navigation