Skip to main content
Log in

New insights into the thermal degradation behavior of Hydroxypropyl-beta-cyclodextrin inclusion complexes containing carvacrol essential oil via thermogravimetric analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The physicochemical properties and thermodynamic parameters of cyclodextrin inclusion complexes (ICs) containing essential oil were investigated by thermogravimetric analysis. It is necessary to understand the ICs’ thermal decomposition behavior and kinetics to control and elucidate the inclusion complexation mechanisms. Carvacrol essential oil was encapsulated with hydroxypropyl-beta-cyclodextrin (HP-β CD) using the freeze-drying method. The IC was characterized by SEM, FT-IR, and phase solubility, which confirmed that there were molecular interactions between the carvacrol essential oil and HP-β CD. Moreover, thermal experiments were carried out by a thermogravimetric analyzer at different heating rates (10–40 °C min−1). In addition, three different models, i.e., FOW, KAS, and Starink, were used to calculate the kinetic energy. The FOW was a more proficient model for the calculation of activation energy (Ea). Further, the average values of Ea varied from conversion, and for carvacrol, HP-β CD, and carvacrol/HP-β CD IC, they were found to be 70.56, 162.15, and 152.57 kJ mol−1 based on the FOW model, respectively. In general, carvacrol encapsulated into HP-β CD as an IC showed high thermal stability. The kinetic results could be useful in predicting the thermal performance of IC and in helping optimize experimental procedures for the encapsulation of essential oils in cyclodextrins.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 Analysis of surface morphology. a HP-β CD; b Physical mixture; c Inclusion complex.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li Z, Wen WW, Chen XL, Zhu L, Cheng GS, Liao ZG, Huang H, Ming LS. Release characteristics of an essential oil component encapsulated with cyclodextrin shell matrices. Curr Drug Deliv. 2021;18:487–99. https://doi.org/10.2174/1567201817666200731164902.

    Article  CAS  PubMed  Google Scholar 

  2. Ming L, Huang H, Jiang Y, Cheng G, Zhang D, Li Z. Quickly identifying high-risk variables of ultrasonic extraction oil from multi-dimensional risk variable patterns and a comparative evaluation of different extraction methods on the quality of Forsythia suspensa seed oil. Molecules. 2019;24:3445. https://doi.org/10.3390/molecules24193445.

    Article  CAS  PubMed Central  Google Scholar 

  3. Galvão JG, Santos RL, Silva ARST, Santos JS, Costa AMB, Chandasana H, Andrade-Neto VV, Torres-Santos EC, Lira AAM, Dolabella S, Scher R, Kima P, Derrendorf H, Nunes RS. Carvacrol loaded nanostructured lipid carriers as a promising parenteral formulation for leishmaniasis treatment. Eur J Pharm Sci. 2020;150: 105335. https://doi.org/10.1016/j.ejps.2020.105335.

    Article  CAS  PubMed  Google Scholar 

  4. Dati LM, Ulrich H, Real CC, Feng ZP, Sun HS, Britto LR. Carvacrol promotes neuroprotection in the mouse hemiparkinsonian model. Neuroscience. 2017;356:176–81. https://doi.org/10.1016/j.neuroscience.2017.05.013.

    Article  CAS  PubMed  Google Scholar 

  5. Souza AG, Santos NMA, Torin RFdS, Rosa DdS. Synergic antimicrobial properties of Carvacrol essential oil and montmorillonite in biodegradable starch films. Int J Biol Macromol. 2020;164:1737–47. https://doi.org/10.1016/j.ijbiomac.2020.07.226.

  6. Yildiz ZI, Celebioglu A, Kilic ME, Durgun E, Uyar T. Fast-dissolving carvacrol/cyclodextrin inclusion complex electrospun fibers with enhanced thermal stability, water solubility, and antioxidant activity. J Mater Sci. 2018;53:15837-49. https://doi.org/10.1007/s10853-018-2750-1.

  7. Marinelli L, Fornasari E, Eusepi P, Ciulla M, Genovese S, Epifano F, Fiorito S, Turkez H, Örtücü S, Mingoia M, Simoni S, Pugnaloni A, Stefano AD, Cacciatore I. Carvacrol prodrugs as novel antimicrobial agents. Eur J Med Chem. 2019;178:515–29. https://doi.org/10.1016/j.ejmech.2019.05.093.

    Article  PubMed  Google Scholar 

  8. Shinde P, Agraval H, Srivastav AK, Yadav UCS, Kumar U. Physico-chemical characterization of carvacrol loaded zein nanoparticles for enhanced anticancer activity and investigation of molecular interactions between them by molecular docking. Int J Pharm. 2020;588:119795. https://doi.org/10.1016/j.ijpharm.2020.119795.

    Article  CAS  PubMed  Google Scholar 

  9. Mauriello E, Ferrari G, Donsì F. Effect of formulation on properties, stability, carvacrol release and antimicrobial activity of carvacrol emulsions. Colloid Surf B. 2021;197: 111424. https://doi.org/10.1016/j.colsurfb.2020.111424.

    Article  CAS  Google Scholar 

  10. Cacciatore FA, Dalmás M, Maders C, Isaía HA, Brandelli A, Malheiros PdS. Carvacrol encapsulation into nanostructures: Characterization and antimicrobial activity against foodborne pathogens adhered to stainless steel. Food Res Int. 2020;133:109143. https://doi.org/10.1016/j.foodres.2020.109143.

  11. Niza E, Božik M, Bravo I, Clemente-Casares P, Lara-Sanchez A, Juan A, Klouček P, Alonso-Moreno C. PEI-coated PLA nanoparticles to enhance the antimicrobial activity of carvacrol. Food Chem. 2020;328: 127131. https://doi.org/10.1016/j.foodchem.2020.127131.

    Article  CAS  PubMed  Google Scholar 

  12. Santos EH, Kamimura JA, Hill LE, Gomes CL. Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT. 2015;60:583–92. https://doi.org/10.1016/j.lwt.2014.08.046.

    Article  CAS  Google Scholar 

  13. Yuan C, Jin Z, Xu X. Inclusion complex of astaxanthin with hydroxypropyl-beta-cyclodextrin: UV, FTIR, 1H NMR and molecular modeling studies. Carbohydr Polym. 2012;89:492–6. https://doi.org/10.1016/j.carbpol.2012.03.033.

    Article  CAS  PubMed  Google Scholar 

  14. Liu DD, Guo YF, Zhang JQ, Yang ZK, Li X, Yang B, Yang R. Inclusion of lycorine with natural cyclodextrins (α-, β- and γ-CD): Experimental and in vitro evaluation. J Mol Struct. 2017;1130:669–76. https://doi.org/10.1016/j.molstruc.2016.11.018.

    Article  CAS  Google Scholar 

  15. Su Z, Qin Y, Zhang K, Bi Y, Kong F. Inclusion complex of exocarpium citri grandis essential oil with beta-cyclodextrin: Characterization, stability, and antioxidant activity. J Food Sci. 2019;84:1592–9. https://doi.org/10.1111/1750-3841.14623.

    Article  CAS  PubMed  Google Scholar 

  16. Chew SC, Tan CP, Nyam KL. Microencapsulation of refined kenaf (Hibiscus cannabinus L.) seed oil by spray drying using β-cyclodextrin/gum arabic/sodium caseinate. J Food Eng. 2018;237:78–85. https://doi.org/10.1016/j.jfoodeng.2018.05.016.

  17. Costa MDS, Rocha JE, Campina FF, Silva ARP, Da Cruz RP, Pereira RLS, Quintans-Júnior LJ, Menezes ID, Araújo AADS, Freitas TSD, Teixeira AMR, Coutinho HDM. Comparative analysis of the antibacterial and drug-modulatory effect of d-limonene alone and complexed with β-cyclodextrin. Eur J Pharm Sci. 2019;128:158–61. https://doi.org/10.1016/j.ejps.2018.11.036.

    Article  CAS  PubMed  Google Scholar 

  18. Chen H, Li L, Ma Y, McDonald TP, Wang Y. Development of active packaging film containing bioactive components encapsulated in β-cyclodextrin and its application. Food Hydrocoll. 2019;90:360–6. https://doi.org/10.1016/j.foodhyd.2018.12.043.

    Article  CAS  Google Scholar 

  19. Niu Y, Deng J, Xiao Z, Kou X, Zhu G, Liu M, Liu S. Preparation and slow release kinetics of apple fragrance/β-cyclodextrin inclusion complex. J Therm Anal Calorim. 2020;143:3775–81. https://doi.org/10.1007/s10973-020-09292-9.

    Article  CAS  Google Scholar 

  20. Rakmai J, Cheirsilp B, Mejuto JC, Simal-Gándara J, Torrado-Agrasar A. Antioxidant and antimicrobial properties of encapsulated guava leaf oil in hydroxypropyl-beta-cyclodextrin. Ind Crop Prod. 2018;111:219–25. https://doi.org/10.1016/j.indcrop.2017.10.027.

    Article  CAS  Google Scholar 

  21. Zhong Y, Li W, Ran L, Hou R, Han P, Lu S, Wang Q, Zhao W, Dong J. Inclusion complexes of tea polyphenols with HP-β-cyclodextrin: preparation, characterization, molecular docking, and antioxidant activity. J Food Sci. 2020;85:1105–13. https://doi.org/10.1111/1750-3841.15083.

    Article  CAS  PubMed  Google Scholar 

  22. Pires FQ, da Silva JKR, Sa-Barreto LL, Gratieri T, Gelfuso GM, Cunha-Filho M. Lipid nanoparticles as carriers of cyclodextrin inclusion complexes: a promising approach for cutaneous delivery of a volatile essential oil. Colloid Surf B. 2019;182: 110382. https://doi.org/10.1016/j.colsurfb.2019.110382.

    Article  CAS  Google Scholar 

  23. Rakmai J, Cheirsilp B, Mejuto JC, Torrado-Agrasar A, Simal-Gándara J. Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocoll. 2017;65:157–64. https://doi.org/10.1016/j.foodhyd.2016.11.014.

    Article  CAS  Google Scholar 

  24. Baser KHC. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr Pharm Des. 2008;14:3106–20. https://doi.org/10.2174/138161208786404227.

    Article  CAS  PubMed  Google Scholar 

  25. Scremin FR, Veiga RS, Silva-Buzanello RA, Becker-Algeri TA, Corso MP, Torquato AS, Bittencourt PPS, Flores ELM, Canna C. Synthesis and characterization of protein microcapsules for eugenol storage. J Therm Anal Calorim. 2017;131:653–60. https://doi.org/10.1007/s10973-017-6302-8.

    Article  CAS  Google Scholar 

  26. He D, Deng P, Yang L, Tan Q, Liu J, Yang M, Zhang J. Molecular encapsulation of rifampicin as an inclusion complex of hydroxypropyl-beta-cyclodextrin: design; characterization and in vitro dissolution. Colloids Surf B. 2013;103:580–5. https://doi.org/10.1016/j.colsurfb.2012.10.062.

    Article  CAS  Google Scholar 

  27. Ahuja N, Katare OP, Singh B. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur J Pharm Biopharm. 2007;65:26–38. https://doi.org/10.1016/j.ejpb.2006.07.007.

    Article  CAS  PubMed  Google Scholar 

  28. Kabirov D, Silvestri T, Niccoli M, Usacheva T, Mayol L, Biondi M, Giancola C. Phase solubility and thermoanalytical studies of the inclusion complex formation between curcumin and hydroxypropyl-β-cyclodextrin in hydroalcoholic solutions. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10381-y.

    Article  Google Scholar 

  29. Prabu S, Sivakumar K, Nayaki SK, Rajamohan R. Host-guest interaction of cytidine in β-cyclodextrin microcavity: characterization and docking study. J Mol Liq. 2016;219:967–74. https://doi.org/10.1016/j.molliq.2016.04.017.

    Article  CAS  Google Scholar 

  30. Lin L, Zhu Y, Thangaraj B, Abdel-Samie MAS, Cui H. Improving the stability of thyme essential oil solid liposome by using beta-cyclodextrin as a cryoprotectant. Carbohydr Polym. 2018;188:243–51. https://doi.org/10.1016/j.carbpol.2018.02.010.

    Article  CAS  PubMed  Google Scholar 

  31. Ming L, Li Z, Wu F, Du R, Feng Y. A two-step approach for fluidized bed granulation in pharmaceutical processing: assessing different models for design and control. PLoS ONE. 2017;12: e0180209. https://doi.org/10.1371/journal.pone.0180209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kringel DH, Antunes MD, Klein B, Crizel RL, Wagner R, de Oliveira RP,Dias ARG, Zavareze EdR. Production, characterization, and stability of orange or eucalyptus essential oil/beta-cyclodextrin inclusion complex. J Food Sci. 2017;82:2598–605. https://doi.org/10.1111/1750-3841.13923.

  33. Li Z, Jiang X, Yao Z, Chen F, Zhu L, Liu H, Ming L. Chitosan functionalized cellulose nanocrystals for stabilizing Pickering emulsion: fabrication, characterization and stability evaluation. Colloid Surf A. 2022;632: 127769. https://doi.org/10.1016/j.colsurfa.2021.127769.

    Article  CAS  Google Scholar 

  34. Liu SH, Hou HY, Chen JW, Weng SY, Lin YC, Shu CM. Effects of thermal runaway hazard for three organic peroxides conducted by acids and alkalines with DSC, VSP2, and TAM III. Thermochim Acta. 2013;566:226–32. https://doi.org/10.1016/j.tca.2013.05.029.

    Article  CAS  Google Scholar 

  35. Mishra RK, Mohanty K. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential. Bioresour Technol. 2020;311: 123480. https://doi.org/10.1016/j.biortech.2020.123480.

    Article  CAS  PubMed  Google Scholar 

  36. Ferrara F, Orsini A, Plaisant A, Pettinau A. Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis. Bioresour Technol. 2014;171:433–41. https://doi.org/10.1016/j.biortech.2014.08.104.

    Article  CAS  PubMed  Google Scholar 

  37. Kaur R, Gera P, Jha MK, Bhaskar T. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresour Technol. 2018;250:422–8. https://doi.org/10.1016/j.biortech.2017.11.077.

    Article  CAS  PubMed  Google Scholar 

  38. Singh RK, Pandey D, Patil T, Sawarkar AN. Pyrolysis of banana leaves biomass: physico-chemical characterization, thermal decomposition behavior, kinetic and thermodynamic analyses. Bioresour Technol. 2020;310: 123464. https://doi.org/10.1016/j.biortech.2020.123464.

    Article  CAS  PubMed  Google Scholar 

  39. Gao S, Jiang J, Li X, Liu Y, Zhao L, Fu Y, Ye F. Enhanced physicochemical properties and herbicidal activity of an environment-friendly clathrate formed by β-cyclodextrin and herbicide cyanazine. J Mol Liq. 2020;305: 112858. https://doi.org/10.1016/j.molliq.2020.112858.

    Article  CAS  Google Scholar 

  40. Nguyen TA, Liu B, Zhao J, Thomas DS, Hook JM. An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex. Food Chem. 2013;136:186–92. https://doi.org/10.1016/j.foodchem.2012.07.104.

    Article  CAS  PubMed  Google Scholar 

  41. Pires FQ, Pinho LA, Freire DO, Silva ICR, Sa-Barreto LL, Cardozo-Filho L, Gratieri T, Gelfuso GM, Cunha-Filho M. Thermal analysis used to guide the production of thymol and Lippia origanoides essential oil inclusion complexes with cyclodextrin. J Therm Anal Calorim. 2018;137:543–53. https://doi.org/10.1007/s10973-018-7956-6.

    Article  CAS  Google Scholar 

  42. Li X, Bai Y, Ji H, Jin Z. The binding mechanism between cyclodextrins and pullulanase: a molecular docking, isothermal titration calorimetry, circular dichroism and fluorescence study. Food Chem. 2020;321: 126750. https://doi.org/10.1016/j.foodchem.2020.126750.

    Article  CAS  PubMed  Google Scholar 

  43. Wang J, Cao Y, Sun B, Wang C. Characterisation of inclusion complex of trans-ferulic acid and hydroxypropyl-β-cyclodextrin. Food Chem. 2011;124:1069–75. https://doi.org/10.1016/j.foodchem.2010.07.080.

    Article  CAS  Google Scholar 

  44. Gao S, Liu Y, Jiang J, Ji Q, Fu Y, Zhao L, Li C, Ye F. Physicochemical properties and fungicidal activity of inclusion complexes of fungicide chlorothalonil with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. J Mol Liq. 2019;293: 111513. https://doi.org/10.1016/j.molliq.2019.111513.

    Article  CAS  Google Scholar 

  45. Łopusiewicz Ł, Kwiatkowski P, Drozłowska E, Trocer P, Kostek M, Śliwiński M, Polak-Śliwińska M, Kowalczyk E, Sienkiewicz M. Preparation and characterization of carboxymethyl cellulose-based bioactive composite films modified with fungal melanin and carvacrol. Polymers. 2021;13:499. https://doi.org/10.3390/polym13040499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng M, Wang J, Zhang R, Kong R, Lu W, Wang X. Characterization and application of the microencapsulated carvacrol/sodium alginate films as food packaging materials. Int J Biol Macromol. 2019;141:259–67. https://doi.org/10.1016/j.ijbiomac.2019.08.215.

    Article  CAS  PubMed  Google Scholar 

  47. Wei Y, Zhang J, Zhou Y, Bei W, Li Y, Yuan Q, Liang H. Characterization of glabridin/hydroxypropyl-β-cyclodextrin inclusion complex with robust solubility and enhanced bioactivity. Carbohydr Polym. 2017;159:152–60. https://doi.org/10.1016/j.carbpol.2016.11.093.

    Article  CAS  PubMed  Google Scholar 

  48. Yang Y, Gao J, Ma X, Huang G. Inclusion complex of tamibarotene with hydroxypropyl-β-cyclodextrin: preparation, characterization, in-vitro and in-vivo evaluation. Asian J Pharm Sci. 2017;12:187–92. https://doi.org/10.1016/j.ajps.2016.08.009.

    Article  PubMed  Google Scholar 

  49. Sattar H, Muzaffar I, Munir S. Thermal and kinetic study of rice husk, corn cobs, peanut crust and Khushab coal under inert (N2) and oxidative (dry air) atmospheres. Renew Energ. 2020;149:794–805. https://doi.org/10.1016/j.renene.2019.12.020.

    Article  CAS  Google Scholar 

  50. Boubacar Laouge Z, Merdun H. Pyrolysis and combustion kinetics of Sida cordifolia L. using thermogravimetric analysis. Bioresour Technol. 2020;299:122602. https://doi.org/10.1016/j.biortech.2019.122602.

  51. Ceylan S, Topçu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresource Technol. 2014;156:182–8. https://doi.org/10.1016/j.biortech.2014.01.040.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant No. 82003953), Natural Science Foundation of Jiangxi Province (Grant No. 20202BAB216039 and 20212BAB216009), Science and Technology Project of Education Department of Jiangxi Province (Grant No. GJJ190688 and GJJ201252), Science and Technology Research Project of Jiangxi Administration of Traditional Chinese medicine (2021A327), 2020-2022 Young Talents Support Project of Chinese Society of Chinese Medicine (2020-QNRC2-07).

Author information

Authors and Affiliations

Authors

Contributions

ZL performed conceptualization. XJ, LZ and FC were involved in data curation. XJ was involved in writing—original draft preparation. FC performed investigation. HL was involved in writing—reviewing. LM performed supervision.

Corresponding author

Correspondence to Liangshan Ming.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Jiang, X., Zhu, L. et al. New insights into the thermal degradation behavior of Hydroxypropyl-beta-cyclodextrin inclusion complexes containing carvacrol essential oil via thermogravimetric analysis. J Therm Anal Calorim 147, 11301–11312 (2022). https://doi.org/10.1007/s10973-022-11327-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11327-2

Keywords

Navigation