Skip to main content
Log in

Combined effect of poly(ethylene glycol) and boron nitride nanosheets on the crystallization behavior and thermal properties of poly(lactic acid)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, poly(ethylene glycol) (PEG)/boron nitride nanosheets (BNNS) masterbatch was prepared by freeze-drying their ultrasonically homogenized aqueous suspension, followed by melt-mixing with poly(lactic acid) (PLA) to fabricate the nanocomposites. The effect of PEG and BNNS on the crystallization behavior of PLA was investigated. The dynamic mechanical properties, thermal conductivity and thermal stability of the nanocomposites were also evaluated. It was found that, under quiescent conditions, PEG and BNNS had a synergistic effect on accelerating the nonisothermal crystallization of PLA. Unexpectedly, under injection molding conditions, the combination of PEG and BNNS had a negative effect on PLA crystallization. This can be ascribed to the plasticizing effect of PEG, which relaxes the orientation of PLA chains and retards flow-induced crystallization. Dynamic mechanical analysis (DMA) showed that the presence of BNNS enhanced the heat resistance of PLA only when PLA was crystallized, while further incorporation of PEG had a negative effect. Nevertheless, simultaneous use of PEG and BNNS had a synergistic effect on enhancing the thermal conductivity of PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R. Poly(lactic acid) — mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev. 2016;107:333–66.

    Article  CAS  Google Scholar 

  2. Zhao Y, Zhu B, Wang Y, Liu C, Shen C. Effect of different sterilization methods on the properties of commercial biodegradable polyesters for single-use, disposable medical devices. Mater Sci Eng C. 2019;105:110041.

    Article  CAS  Google Scholar 

  3. Du Z, Chen K, Zhang Y, Wang Y, He P, Mi H-Y, et al. Engineering multilayered MXene/electrospun poly(lactic acid) membrane with increscent electromagnetic interference shielding (EMI) for integrated Joule heating and energy generating. Compos Commun. 2021;26:100770.

    Article  Google Scholar 

  4. Wang Y, Liang L, Du Z, Wang Y, Liu C, Shen C. Biodegradable PLA/CNTs/Ti3C2Tx MXene nanocomposites for efficient electromagnetic interference shielding. J Mater Sci: Mater Electron. 2021;32:25952–62.

    CAS  Google Scholar 

  5. Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33:820–52.

    Article  CAS  Google Scholar 

  6. Liu G, Zhang X, Wang D. Tailoring crystallization: towards high-performance poly(lactic acid). Adv Mater. 2014;26:6905–11.

    Article  CAS  Google Scholar 

  7. Wang Y, Liu C, Shen C. Crystallization behavior of poly(lactic acid) and its blends. Polym Cryst. 2021;4:e10171.

    CAS  Google Scholar 

  8. Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37:1657–77.

    Article  CAS  Google Scholar 

  9. dos Santos Silva ID, Schäfer H, Jaques NG, Siqueira DD, Ries A, de Souza Morais DD. An investigation of PLA/Babassu cold crystallization kinetics. J Therm Anal Calorim. 2020;141:1389–97.

    Article  Google Scholar 

  10. Díaz-Díaz AM, López-Beceiro J, Li Y, Cheng Y, Artiaga R. Crystallization kinetics of a commercial poly(lactic acid) based on characteristic crystallization time and optimal crystallization temperature. J Therm Anal Calorim. 2021;145:3125–32.

    Article  Google Scholar 

  11. Kong W, Zhu B, Su F, Wang Z, Shao C, Wang Y, et al. Melting temperature, concentration and cooling rate-dependent nucleating ability of a self-assembly aryl amide nucleator on poly(lactic acid) crystallization. Polymer. 2019;168:77–85.

    Article  CAS  Google Scholar 

  12. Wei Z, Shao S, Sui M, Song P, He M, Xu Q, et al. Development of zinc salts of amino acids as a new class of biocompatible nucleating agents for poly(L-lactide). Eur Polym J. 2019;118:337–46.

    Article  CAS  Google Scholar 

  13. Bai T, Zhu B, Liu H, Wang Y, Song G, Liu C, et al. Biodegradable poly(lactic acid) nanocomposites reinforced and toughened by carbon nanotubes/clay hybrids. Int J Biol Macromol. 2020;151:628–34.

    Article  CAS  Google Scholar 

  14. Li Y, Wang Y, Liu L, Han L, Xiang F, Zhou Z. Crystallization improvement of poly(L-lactide) induced by functionalized multiwalled carbon nanotubes. J Polym Sci Part B Polym Phys. 2009;47:326–39.

    Article  CAS  Google Scholar 

  15. Wu D, Cheng Y, Feng S, Yao Z, Zhang M. Crystallization behavior of polylactide/graphene composites. Ind Eng Chem Res. 2013;52:6731–9.

    Article  CAS  Google Scholar 

  16. Zhao Q, Wang B, Qin C, Li Q, Liu C, Shen C, et al. Nonisothermal melt and cold crystallization behaviors of biodegradable poly(lactic acid)/Ti3C2Tx MXene nanocomposites. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-10502-7.

    Article  Google Scholar 

  17. Guerra V, Wan C, McNally T. Thermal conductivity of 2D nano-structured boron nitride (BN) and its composites with polymers. Prog Mater Sci. 2019;100:170–86.

    Article  CAS  Google Scholar 

  18. Yu C, Zhang J, Tian W, Fan X, Yao Y. Polymer composites based on hexagonal boron nitride and their application in thermally conductive composites. RSC Adv. 2018;8:21948.

    Article  CAS  Google Scholar 

  19. Song W-L, Wang P, Cao L, Anderson A, Meziani MJ, Farr AJ, et al. Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew Chem. 2012;124:6604–7.

    Article  Google Scholar 

  20. Yu J, Mo H, Jiang P. Polymer/boron nitride nanosheet composite with high thermal conductivity and sufficient dielectric strength. Polym Adv Technol. 2015;26:514–20.

    Article  CAS  Google Scholar 

  21. Wang Z, Li Q, Chen Z, Liu J, Liu T, Li H, et al. Enhanced comprehensive properties of nylon-6 nanocomposites by aniline-modified boron nitride nanosheets. Ind Eng Chem Res. 2018;57:11005–13.

    Article  CAS  Google Scholar 

  22. Shen W, Wu W, Liu C, Wang Z, Huang Z. Achieving a high thermal conductivity for segregated BN/PLA composites via hydrogen bonding regulation through cellulose network. Polym Adv Technol. 2020;31:1911–20.

    Article  CAS  Google Scholar 

  23. Bindhu B, Renisha R, Roberts L, Varghese TO. Boron nitride reinforced polylactic acid composites film for packaging: Preparation and properties. Polym Test. 2018;66:172–7.

    Article  CAS  Google Scholar 

  24. Rosely CVS, Shaiju P, Gowd EB. Poly(L-lactic acid)/boron nitride nanocomposites: Influence of boron nitride functionalization on the properties of poly(L-lactic acid). J Phys Chem B. 2019;123:8599–609.

    Article  CAS  Google Scholar 

  25. Rosely CVS, Nagendra B, Sivaprasad VP, Gowd EB. Influence of boron nitride nanosheets on the crystallization and polymorphism of poly(L-lactide). J Phys Chem B. 2018;122:6442–51.

    Article  CAS  Google Scholar 

  26. Kong D, Zhang D, Guo H, Zhao J, Wang Z, Hu H, et al. Functionalized boron nitride nanosheets/poly(L-lactide) nanocomposites and their crystallization behavior. Polymers. 2019;11:440.

    Article  Google Scholar 

  27. Li M, Hu D, Wang Y, Shen C. Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym Eng Sci. 2010;50:2298–305.

    Article  CAS  Google Scholar 

  28. Kong W, Tong B, Ye A, Ma R, Gou J, Wang Y, et al. Crystallization behavior and mechanical properties of poly(lactic acid)/poly(ethylene oxide) blends nucleated by a self-assembly nucleator. J Therm Anal Calorim. 2019;135:3107–14.

    Article  CAS  Google Scholar 

  29. Yang J-H, Shen Y, He W-D, Zhang N, Huang T, Zhang J-H, et al. Synergistic effect of poly(ethylene glycol) and graphene oxides on the crystallization behavior of poly(L-lactide). J Appl Polym Sci. 2013;130:3498–508.

    Article  CAS  Google Scholar 

  30. Athanasoulia IG, Giachalis K, Todorova N, Giannakopoulou T, Tarantili P, Trapalis C. Preparation of hybrid composites of PLLA using GO/PEG masterbatch and their characterization. J Therm Anal Calorim. 2021;143:3385–99.

    Article  CAS  Google Scholar 

  31. Zeng Q, Wang Y, Wang Y, Cao W, Liu C, Shen C. Polyethylene oxide-assisted dispersion of graphene nanoplatelets in poly(lactic acid) with enhanced mechanical properties and crystallization ability. Polym Test. 2019;78:106008.

    Article  Google Scholar 

  32. Chen L, Dou Q. Influence of the combination of nucleating agent and plasticizer on the non-isothermal crystallization kinetics and activation energies of poly(lactic acid). J Therm Anal Calorim. 2020;139:1069–90.

    Article  CAS  Google Scholar 

  33. Anakabe J, Zaldua Huici AM, Eceiza A, Arbelaiz A, Avérous L. Combined effect of nucleating agent and plasticizer on the crystallization behaviour of polylactide. Polym Bull. 2017;74:4857–86.

    Article  CAS  Google Scholar 

  34. Fehri MK, Mugoni C, Cinelli P, Anguillesi I, Coltelli MB, Fiori S, et al. Composition dependence of the synergistic effect of nucleating agent and plasticizer in poly(lactic acid): A mixture design study. Express Polym Lett. 2016;10:274–88.

    Article  CAS  Google Scholar 

  35. Gao X, Qi S, Yang B, Su Y, Li J, Wang D. Synergistic effect of plasticizer and nucleating agent on crystallization behavior of polylactide during fused filament fabrication. Polymer. 2021;215:123426.

    Article  CAS  Google Scholar 

  36. He D, Wang Y, Shao C, Zheng G, Li Q, Shen C. Effect of phthalimide as an efficient nucleating agent on the crystallization kinetics of poly(lactic acid). Polym Test. 2013;32:1088–93.

    Article  CAS  Google Scholar 

  37. Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  38. Avrami M. Granulation, phase change, and microstructure kinetics of phase change. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  39. Shen C, Wang Y, Li M, Hu D. Crystal modifications and multiple melting behavior of poly(L-lactic acid-co-D-lactic acid). J Polym Sci, Part B: Polym Phys. 2011;49:409–13.

    Article  CAS  Google Scholar 

  40. Cristea M, Ionita D, Iftime MM. Dynamic mechanical analysis investigations of PLA-based renewable materials: How are they useful? Materials. 2020;13:5302.

    Article  CAS  Google Scholar 

  41. Rosely CVS, Joseph AM, Leuteritz A, Gowd EB. Phytic acid modified boron nitride nanosheets as sustainable multifunctional nanofillers for enhanced properties of poly(L-lactide). ACS Sustainable Chem Eng. 2020;8:1868–78.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (52073261, U1704162).

Author information

Authors and Affiliations

Authors

Contributions

QL Investigation, Validation, Writing—original draft. RX Investigation. KC Investigation. MJ Writing—review & editing. CL Resources. CS Resources. YW Conceptualization, Supervision, Writing—original draft, Writing—review & editing.

Corresponding author

Correspondence to Yaming Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Xu, R., Chen, K. et al. Combined effect of poly(ethylene glycol) and boron nitride nanosheets on the crystallization behavior and thermal properties of poly(lactic acid). J Therm Anal Calorim 147, 11147–11158 (2022). https://doi.org/10.1007/s10973-022-11308-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11308-5

Keywords

Navigation