Skip to main content
Log in

Ultrasonication time optimization for multi-walled carbon nanotube based Therminol-55 nanofluid: an experimental investigation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main theme of the work is to examine the influence of ultrasonication time on colloidal stability and thermal conductivity (TC) of multi-walled carbon nanotubes (MWCNTs)-Therminol 55 based nanofluid. Three different volume percentages of nanofluid samples have been produced namely 0.09, 0.18, and 0.3 vol.% by adopting various ultrasonication times, varying from 30 to 120 min. The colloidal stability of the nanofluid samples has been examined over one month after formulation through carrying out zeta potential examination and visual inspection method. From the results it can be concluded that an increase in the sonication time up to 120 min results in the improved colloidal stability of nanofluid samples. Extending sonification time beyond 60 min weakened the nanofluid stability. The nanofluid TC of the samples has been measured experimentally over various temperatures ranging from 30 to 50 °C. It is noticed that rising the nanofluid temperature outcomes in decreasing the nanofluid TC, whereas it was incremented with rise in MWCNT concentration. Besides, the impacts of ultrasonication time on stability and TC have been examined, and it is noticed that rising the time of ultrasonication inducting a quiet augmentation in nanofluid TC. The highest TC was attained by employing 60 min time of ultrasonication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Al2O3 :

Aluminum oxide

CS:

Colloidal stability

GA:

Gum arabic

GNP:

Graphene nanoplatelets

IEP:

Isoelectric point

MWCNT:

Multi-walled carbon nanotubes

SS:

Stainless steel

T55:

Therminol-55

TC:

Thermal conductivity (W m1 K1)

ZP:

Zeta potential

References

  1. Gupta M, Singh V, Kumar R, Said Z. A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sustain Energy Rev. 2017;74:638–70.

    Article  CAS  Google Scholar 

  2. Okonkwo EC, Wole-Osho I, Almanassra IW, Abdullatif YM, Al-Ansari T. An updated review of nanofluids in various heat transfer devices. J Thermal Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09760-2.

    Article  Google Scholar 

  3. Thakur AK, Prabakaran R, Elkadeem MR, Sharshir SW, Arıcı M, Wang C, Zhao W. A state of the art review on the thermal management systems for lithium -ion batteries of electric vehicles. J Energy Storage. 2020;32:101771.

    Article  Google Scholar 

  4. Harish S, Orejon D, Takata Y, Kohno M. Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets. Appl Therm Eng. 2015;80:205–11.

    Article  CAS  Google Scholar 

  5. Poongavanam GK, Murugesan R, Ramalingam V. Thermal and electrical conductivity enhancement of solar glycol-water mixture containing MWCNTs. Fullerenes Nanotubes Carbon Nanostruct. 2019;26(12):871–9.

    Article  Google Scholar 

  6. Poongavanam GK, Ramalingam V. Characteristics investigation on thermophysical properties of synthesized activated carbon nanoparticles dispersed in solar glycol. Int J Therm Sci. 2019;136:15–32.

    Article  CAS  Google Scholar 

  7. Asadi A, Pourfattahd F, Szilágyi IM, Afrand M, Żyła G, Ahn HS, Wongwises S, Nguyen HMN, Arabkoohsar A, Mahian O. Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: a comprehensive review. Ultrasonics Sonochem. 2019;58:104701.

    Article  CAS  Google Scholar 

  8. Asif A, Nawfal I, Mahbubul IM, Kumbar SS. An overview on the effect of ultrasonication duration on different properties of nanofluids. J Therm Anal Calorim. 2019;135(1):393–418.

    Article  Google Scholar 

  9. Kumar GP, Kumaresan V, Velraj R. Stability, viscosity, thermal conductivity and electrical conductivity enhancement of multi walled carbon nanotube nanofluid using gum Arabic. Fullerenes Nanotubes Carbon Nanostruct. 2017;25(4):230–40.

    Article  CAS  Google Scholar 

  10. Sani E, Vallejo JP, Cabaleiro D, Lugo L. Functionalized graphene nano platelet nanofluids for solar thermal collectors. Sol Energy Mater Sol Cells. 2018;185:205–9.

    Article  CAS  Google Scholar 

  11. Prabakaran R, Kumar JPN, Lal DM, Selvam C, Harish S. Constrained melting of graphene-based phase change nanocomposites inside a sphere. J Therm Anal Calorim. 2020;139:941–52.

    Article  CAS  Google Scholar 

  12. Prabakaran R, Sidney S, Lal DM, Selvam C, Harish S. Solidification of graphene-assisted phase change nanocomposites inside a sphere for cold storage applications. Energies. 2019;12(18):3473.

    Article  CAS  Google Scholar 

  13. Yuanzhou Z, Shahsavar A, Afrand M. Sonication time efficacy on Fe3O4-liquid paraffin magnetic nanofluid thermal conductivity: an experimental evaluation. Ultrasonics Sonochem. 2020;64:105004.

    Article  Google Scholar 

  14. Amin A, Asadi M, Siahmargoi M, Asadi T, Andarati MG. The effect of surfactant and sonication time on the stability and thermal conductivity of water-based nanofluid containing Mg (OH)2 nanoparticles: An experimental investigation. Int J Heat Mass Transf. 2017;108:191–8.

    Article  Google Scholar 

  15. Aida N, Shariaty-Niasar M, Rashidi A, Amrollahi A, Khodafarin R. Effect of dispersion method on thermal conductivity and stability of nanofluid. Exp Thermal Fluid Sci. 2011;35(4):717–23.

    Article  Google Scholar 

  16. Mahbubul IM, Saidur R, Amalina MA, Niza ME. Influence of ultrasonication duration on rheological properties of nanofluid: an experimental study with alumina–water nanofluid. Int Commun Heat Mass Transf. 2016;76:33–40.

    Article  CAS  Google Scholar 

  17. Adio A, Mohsen S, Josua PM. Influence of ultrasonication energy on the dispersion consistency of Al2O3–glycerol nanofluid based on viscosity data, and model development for the required ultrasonication energy density. J Exp Nanosci. 2016;11(8):630–49.

    Article  CAS  Google Scholar 

  18. Michael M, Zagabathuni A, Sikdar S, Pabi SK, Ghosh S. Effect of dispersion behavior on the heat transfer characteristics of alumina nanofluid: an experimental investigation and development of a new correlation function. Int Nano Lett. 2020. https://doi.org/10.1007/s40089-020-00306-w(Articleinpress).

    Article  Google Scholar 

  19. Tajik B, Abbassi A, Saffar-Avval M, Najafabadi MA. Ultrasonic properties of suspensions of TiO2 and Al2O3 nanoparticles in water. Powder Technol. 2012;217:171–6.

    Article  CAS  Google Scholar 

  20. Sonawane SS, Khedkar RS, Wasewar KL. Effect of sonication time on enhancement of effective thermal conductivity of nano TiO2–water, ethylene glycol, and paraffin oil nanofluids and models comparisons. J Exp Nanosci. 2015;10(4):310–22.

    Article  CAS  Google Scholar 

  21. Buonomo B, Manca O, Marinelli L, Nardini S. Effect of temperature and sonication time on nanofluid thermal conductivity measurements by nano-flash method. Appl Therm Eng. 2015;91:181–90.

    Article  CAS  Google Scholar 

  22. Ghadimi A, Ibrahim HM. The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid. Exp Thermal Fluid Sci. 2013;51:1–9.

    Article  CAS  Google Scholar 

  23. Dagdevir T, Ozceyhan V. Optimization of process parameters in terms of stabilization and thermal conductivity on water based TiO2 nanofluid preparation by using Taguchi method and Grey relation analysis. Int Commun Heat Mass Transf. 2021;120:105047.

    Article  CAS  Google Scholar 

  24. Prabakaran R, Sidney S, Lal DM, Harish S, Kim SC. Experimental performance of a mobile air conditioning unit with small thermal energy storage for idle stop/start vehicles. J Thermal Anal Calorim 2022;147(8):5117–5132.

  25. Kumar AT, Naimish SP, Zafar S, Hakan FO, Nidal AH. 4S consideration (synthesis, sonication, surfactant, stability) for the thermal conductivity of CeO2 with MWCNT and water based hybrid nanofluid: an experimental assessment. Colloids Surfaces A Physicochem Eng Asp. 2021;610:125918.

    Article  Google Scholar 

  26. Sandhya M, Ramasamy D, Sudhakar K, Kadirgama K, Harun WSW. Ultrasonication an intensifying tool for preparation of stable nanofluids and study the time influence on distinct properties of graphene nanofluids—a systematic overview. Ultrasonics Sonochem. 2021;73:105479.

    Article  CAS  Google Scholar 

  27. Turner P, Hodnett M, Dorey R, Carey JD. Controlled sonication as a route to in-situ graphene flake size control. Sci Rep. 2019;9(1):1–8.

    Article  Google Scholar 

  28. Tiwari AK, Pandya NS, Said Z, Chhatbar SH, Al-Turki YA, Patel AR. 3S (Sonication, surfactant, stability) impact on the viscosity of hybrid nanofluid with different base fluids: an experimental study. J Mol Liq. 2021;329:115455.

    Article  CAS  Google Scholar 

  29. Asadi A, Alarifi IM, Ali V, Nguyen HM. An experimental investigation on the effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid: finding the optimum ultrasonication time. Ultrasonics Sonochem. 2019;58:104639.

    Article  CAS  Google Scholar 

  30. Jóźwiak B, Greer HF, Dzido G, Kolanowska A, Jędrysiak R, Dziadosz J, Dzida M, Boncel S. Effect of ultrasonication time on microstructure, thermal conductivity, and viscosity of ionanofluids with originally ultra-long multi-walled carbon nanotubes. Ultrasonics Sonochem. 2021;77:105681.

    Article  Google Scholar 

  31. Mahbubul IM, Elcioglu EB, Amalina MA, Saidur R. Stability, thermophysical properties and performance assessment of alumina–water nanofluid with emphasis on ultrasonication and storage period. Powder Technol. 2019;345:668–75.

    Article  CAS  Google Scholar 

  32. Mahbubul IM, Elcioglu EB, Saidur R, Amalina MA. Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrason Sonochem. 2017;37:360–7.

    Article  CAS  PubMed  Google Scholar 

  33. Ervina J, Ghaleb ZA, Hamdam S, Mariatti M. Colloidal stability of water-based carbon nanotube suspensions in electrophoretic deposition process: Effect of applied voltage and deposition time. Compos A Appl Sci Manuf. 2019;117:1–10.

    Article  CAS  Google Scholar 

  34. Gómez S, Rendtorff NM, Aglietti EF, Sakkac Y, Suárez G. Surface modification of multiwall carbon nanotubes by sulfonitric treatment. Appl Surf Sci. 2016;379:264–9.

    Article  Google Scholar 

  35. Selvam C, Harish S, Lal DM. Effective thermal conductivity and rheological characteristics of ethylene glycol-based nanofluids with single-walled carbon nanohorn inclusions. Fullerenes Nanotubes Carbon Nanostruct. 2017;25(2):86–93.

    Article  CAS  Google Scholar 

  36. Kim SC, Prabakaran R, Sakthivadivel D, Thangapandian N, Bhatia A, Kumar PG. "Thermal transport properties of carbon-assisted phase change nanocomposite. Fullerenes Nanotubes Carbon Nanostruct. 2020;28(11):925–33.

    Article  CAS  Google Scholar 

  37. Noroozi M, Radiman S, Zakaria A. Influence of sonication on the stability and thermal properties of Al2O3 nanofluids. J Nanomater 2014;612417:1–10.

  38. Singh T, Almanassra IW, Olabi AG, Al-Ansari T, McKay G, Atieh MA. Performance investigation of multiwall carbon nanotubes based water/oil nanofluids for high pressure and high temperature solar thermal technologies for sustainable energy systems. Energy Convers Manag. 2020;225:113453.

    Article  CAS  Google Scholar 

  39. Rashmi W, Ismail AF, Sopyan I, Jameel AT, Yusof F, Khalid M, Mubarak NM. Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum arabic. J Exp Nanosci. 2011;6(6):567–79.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—P. Ganeshkumar, R. Prabakaran, and S.C. Kim; Methodology—P. Ganeshkumar, R. Prabakaran, and D. Sakthivadivelu; Formal analysis—P. Ganeshkumar, R. Prabakaran, D. Sakthivadivelu and S.C. Kim; Writing—original draft preparation—P. Ganeshkumar and R. Prabakaran; Writing—review and editing—P. Somasundaram, V.S. Vigneswaran, and S.C. Kim; Supervision, S.C. Kim.

Corresponding authors

Correspondence to P. Ganesh Kumar, Rajendran Prabakaran or Sung Chul Kim.

Ethics declarations

Conflict of interest

All authors declared no potential conflicts of interest concerning the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.G., Prabakaran, R., Sakthivadivel, D. et al. Ultrasonication time optimization for multi-walled carbon nanotube based Therminol-55 nanofluid: an experimental investigation. J Therm Anal Calorim 147, 10329–10336 (2022). https://doi.org/10.1007/s10973-022-11298-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11298-4

Keywords

Navigation