Skip to main content
Log in

Thermal and corrosion characteristics of laser-cladded H13 layer on C45 substrate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the effects of H13 laser cladding layer on mechanical, thermal, and corrosion characteristic of C45 carbon steel using a laser flash analysis and potentiodynamic polarization technique. H13 powder was built up layer by laser-assisted metal deposition equipment. The thermal conductivity of the C45-H13 specimen was improved by about 25% compared to that of H13. In potentiodynamic polarization test, C45-H13 specimens were noble than H13 and C45 which had the lowest Ecorr to − 420 mV. Hence, the C45 displayed the lowest icorr to 1.33 × 10–6 A cm−2, and for C45-H13 it was 1.94 × 10–6 A cm−2. It was found that the corrosion resistance of the laser-cladded H13 layer was lower than that of C45 but improved compared to the H13 plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Telasang G, Dutta Majumdar J, Padmanabham G, Tak M, Manna I. Effect of laser parameters on microstructure and hardness of laser clad and tempered AISI H13 tool steel. Surf Coatings Technol. 2014;258:1108–18. https://doi.org/10.1016/j.surfcoat.2014.07.023.

    Article  CAS  Google Scholar 

  2. Kattire P, Paul S, Singh R, Yan W. Experimental characterization of laser cladding of CPM 9V on H13 tool steel for die repair applications. J Manuf Process. 2015;20:492–9. https://doi.org/10.1016/j.jmapro.2015.06.018.

    Article  Google Scholar 

  3. Hemmati I, Ocelík V, De Hosson JTM. Effects of the alloy composition on phase constitution and properties of laser deposited Ni-Cr-B-Si coatings. Phys Procedia. 2013;41:302–11. https://doi.org/10.1016/j.phpro.2013.03.082.

    Article  CAS  Google Scholar 

  4. Shim DS, Baek GY, Lee SB, Yu JH, Choi YS, Park SH. Influence of heat treatment on wear behavior and impact toughness of AISI M4 coated by laser melting deposition. Surf Coatings Technol. 2017;328:219–30. https://doi.org/10.1016/j.surfcoat.2017.08.059.

    Article  CAS  Google Scholar 

  5. Farnia A, Malek Ghaini F, Sabbaghzadeh J. Effects of pulse duration and overlapping factor on melting ratio in preplaced pulsed Nd:YAG laser cladding. Opt Lasers Eng. 2013;51:69–76. https://doi.org/10.1016/j.optlaseng.2012.07.015.

    Article  Google Scholar 

  6. Xu P, Lin CX, Zhou CY, Yi XP. Wear and corrosion resistance of laser cladding AISI 304 stainless steel/Al2O3 composite coatings. Surf Coatings Technol. 2014;238:9–14. https://doi.org/10.1016/j.surfcoat.2013.10.028.

    Article  CAS  Google Scholar 

  7. Shim DS, Baek GY, Seo JS, Shin GY, Kim KP, Lee KY. Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process. Opt Laser Technol. 2016;86:69–78. https://doi.org/10.1016/j.optlastec.2016.07.001.

    Article  CAS  Google Scholar 

  8. Tanigawa D, Abe N, Tsukamoto M, Hayashi Y, Yamazaki H, Tatsumi Y, Yoneyama M. The effect of particle size on the heat affected zone during laser cladding of Ni–Cr–Si–B alloy on C45 carbon steel. Opt Lasers Eng. 2018;101:23–7. https://doi.org/10.1016/j.optlaseng.2017.09.021.

    Article  Google Scholar 

  9. Stadler F, Antrekowitsch H, Fragner W, Kaufmann H, Pinatel ER, Uggowitzer PJ. The effect of main alloying elements on the physical properties of Al-Si foundry alloys. Mater Sci Eng A. 2013;560:481–91. https://doi.org/10.1016/j.msea.2012.09.093.

    Article  CAS  Google Scholar 

  10. Narvan M, Al-Rubaie KS, Elbestawi M. Process-structure-property relationships of AISI H13 tool steel processed with selective laser melting. Materials (Basel). 2019;12:1–20. https://doi.org/10.3390/ma12142284.

    Article  CAS  Google Scholar 

  11. Cramer SD, Covino EBS Jr. New literature corrosion: fundamentals, testing, and protection, 10 th, materials Park, 2003.

  12. Klemens PG. Theory of thermal conductivity of solids. Therm Conduct. 1969;1:1–68.

    CAS  Google Scholar 

  13. Tritt TM. Thermal conductivity: theory, properties, and applications. New York: Kluwer Academic/Plenum; 2004.

    Book  Google Scholar 

  14. Cengel YA, Ghajar AJ. Heat and mass transfer. Berlin: Springer; 2011. https://doi.org/10.1017/CBO9781107415324.004.

    Book  Google Scholar 

  15. Kaviany M, Kanury A. Principles of heat transfer. Appl Mech Rev. 2002. https://doi.org/10.1115/1.1497490.

    Article  Google Scholar 

  16. Xu J, Liu W, Kan Y, Zhong M. Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024 aluminum alloy. Mater Des. 2006;27:405–10. https://doi.org/10.1016/j.matdes.2004.11.011.

    Article  CAS  Google Scholar 

  17. Baek GY, Shin GY, Lee EM, Shim DS, Lee KY, Yoon HS, Kim MH. Mechanical characteristics of a tool steel layer deposited by using direct energy deposition. Met Mater Int. 2017;23:770–7. https://doi.org/10.1007/s12540-017-6442-1.

    Article  CAS  Google Scholar 

  18. Al DA. Rapidly solidified aluminum alloys. 1678. https://doi.org/10.2464/jilm.39.850.

  19. Porter DA, Sterling KE. Phase transformation in metals and alloys, 3 rd, Garland Science, 2001. http://books.google.co.kr/books?id=nXXcSAAACAAJ.

  20. Brown M, Gallagher P. Handbook of thermal analysis and calorimetry, volume 5 recent advances, techniques and applications. Elsevier, New York, 2008.

  21. Tritt TM. Thermal conductivity: theory, properties and applications, 1st ed., Kluwer Academic/Plemum Publishers, 2004.

  22. Torkamani H, Raygan S, Rassizadehghani J. Comparing microstructure and mechanical properties of AISI D2 steel after bright hardening and oil quenching. Mater Des. 2014;54:1049–55. https://doi.org/10.1016/j.matdes.2013.09.043.

    Article  CAS  Google Scholar 

  23. Peter I, Rosso M, Gobber FS. Study of protective coatings for aluminum die casting molds. Appl Surf Sci. 2015;358:563–71. https://doi.org/10.1016/j.apsusc.2015.08.013.

    Article  CAS  Google Scholar 

  24. Ezuber H, El-Houd A, El-Shawesh F. A study on the corrosion behavior of aluminum alloys in seawater. Mater Des. 2008;29:801–5. https://doi.org/10.1016/j.matdes.2007.01.021.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Weon Choi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YM., Shin, GY., Kim, YC. et al. Thermal and corrosion characteristics of laser-cladded H13 layer on C45 substrate. J Therm Anal Calorim 147, 11013–11019 (2022). https://doi.org/10.1007/s10973-022-11297-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11297-5

Keywords

Navigation