Skip to main content
Log in

Numerical study of PCMs arrangement effect on heat transfer performance in plate-finned heat sink for passive cooling system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Passive temperature control and thermal storage systems using phase change materials are widespread and have a high potential in modern technologies. This research deals with the computational analysis of natural convection melting in a multi-PCM thermal sink heated from an element of volumetric energy production. The influence of the geometric parameters of the system and the arrangement of materials in it is analyzed. Numerical modeling has been carried out using the finite difference technique. Governing equations for the mass, momentum and energy transfer have been written employing stream function, vorticity and temperature. Based on the obtained distributions of local fields for energy and mass transference and changes in the average temperature of the heater, it is shown that, despite the smaller surface area, separation by vertical flat fins provides lower temperatures and longer melting when the source is located below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Bi:

Biot parameter

c :

Heat capacity, JK−1 kg−1

g :

Gravitational acceleration, ms−2

H :

Cabinet height, m

h :

Specific enthalpy, Jkg−1

k :

Thermal conductivity, WK−1 m−1

L f :

Latent melting energy, Jkg−1

Os:

Ostrogradsky parameter

p :

Pressure, Pa

Pr:

Prandtl parameter

Q :

Heat generation intensity per unit volume, W m−3

Ra:

Rayleigh parameter

Ste:

Stefan parameter

t :

Time, s

T :

Temperature, K

T m :

Melting temperature, K

u, v :

Horizontal and vertical velocity components, ms−1

U, V :

Dimensionless velocity components

V liq :

Molten phase change material volume ratio

x, y :

Coordinates, m

X, Y :

Dimensionless coordinates

α :

Heat diffusivity, m2 s−1

β :

Heat expansion parameter, K−1

γ :

Heat transport parameter, WK−1 m−2

η :

Melting temperature parameter, K

Θ:

Dimensionless temperature

μ :

Dynamic viscosity, Pa s

ν :

Kinematic viscosity, m2 s−1

ρ :

Density, kgm−3

τ :

Dimensionless time

φ :

Melt volume fraction

ψ :

Stream function, m2 s−1

Ψ :

Dimensionless stream function

ω :

Vorticity, s−1

Ω:

Dimensionless vorticity

0:

Initial condition or external

1:

Cold zone

2:

Hot zone

l:

Liquid

m:

Melt

s:

Solid

References

  1. Gorzin M, Hosseini MJ, Rahimi M, Bahrampoury R. Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger. J Energy Storage. 2019;22:88–97.

    Article  Google Scholar 

  2. Tiari S, Hockins A, Mahdavi M. Numerical study of a latent heat thermal energy storage system enhanced by varying fin configurations. Case Stud Therm Eng. 2021;25:100999.

    Article  Google Scholar 

  3. Tiari S, Mahdavi M, Qiu S. Experimental study of a latent heat thermal energy storage system assisted by a heat pipe network. Energy Convers Manag. 2017;153:362–73.

    Article  CAS  Google Scholar 

  4. Yang L, Zhang X, Xu G. Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points. Energy Build. 2014;68:639–46.

    Article  Google Scholar 

  5. Mosaffa AH, Infante Ferreira CA, Talati F, Rosen MA. Thermal performance of a multiple PCM thermal storage unit for free cooling. Energy Convers Manag. 2013;67:1–7.

    Article  CAS  Google Scholar 

  6. Sodhi GS, Muthukumar P. Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution. Renew Energy. 2021;171:299–314.

    Article  Google Scholar 

  7. Safaei MR, Goshayeshi HR, Chaer I. Solar still efficiency enhancement by using graphene oxide/paraffin nano-PCM. Energies. 2019;12:2002.

    Article  CAS  Google Scholar 

  8. Sarafraz MM, Safaei MR, Leon AS, Tlili I, Alkanhal TA, Tian Z, Goodarzi M, Arjomandi M. Experimental investigation on thermal performance of a PV/T-PCM (photovoltaic/thermal) system cooling with a PCM and nanofluid. Energies. 2019;12:2572.

    Article  CAS  Google Scholar 

  9. Aldoss TK, Rahman MM. Comparison between the single-PCM and multi-PCM thermal energy storage design. Energy Convers Manag. 2014;83:79–87.

    Article  Google Scholar 

  10. Tian Y, Zhao CY. Thermal and exergetic analysis of metal foam-enhanced cascaded thermal energy storage (MF-CTES). Int J Heat Mass Transf. 2013;58(1–2):86–96.

    Article  CAS  Google Scholar 

  11. Gong Z-X, Mujumdar AS. Cyclic heat transfer in a novel storage unit of multiple phase change materials. Appl Therm Eng. 1996;16(10):807–15.

    Article  CAS  Google Scholar 

  12. Gong Z-X, Mujumdar AS. Thermodynamic optimization of the thermal process in energy storage using multiple phase change materials. Appl Therm Eng. 1997;17(11):1067–83.

    Article  CAS  Google Scholar 

  13. Chiu JNW, Martin V. Multistage latent heat cold thermal energy storage design analysis. Appl Energy. 2013;112:1438–45.

    Article  Google Scholar 

  14. Zhao J, Wu C, Rao Z. Investigation on the cooling and temperature uniformity of power battery pack based on gradient phase change materials embedded thin heat sinks. Appl Therm Eng. 2020;174:115304.

    Article  Google Scholar 

  15. Shabgard H, Robak CW, Bergman TL, Faghri A. Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications. Sol Energy. 2012;86(3):816–30.

    Article  CAS  Google Scholar 

  16. Peiró G, Gasia J, Miró L, Cabeza LF. Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage. Renew Energy. 2015;83:729–36.

    Article  Google Scholar 

  17. Li X-Y, Yang L, Wang X-L, Miao X-Y, Yao Y, Qiang Q-Q. Investigation on the charging process of a multi-PCM latent heat thermal energy storage unit for use in conventional air-conditioning systems. Energy. 2018;150:591–600.

    Article  Google Scholar 

  18. Liu J, Liu Z, Nie C. Phase transition enhancement through circumferentially arranging multiple phase change materials in a concentric tube. J Energy Storage. 2021;40:102672.

    Article  Google Scholar 

  19. Saha SK, Dutta P. Heat transfer correlations for PCM-based heat sinks with plate fins. Appl Therm Eng. 2010;30(16):2485–91.

    Article  CAS  Google Scholar 

  20. Avci M, Yazici MY. An experimental study on effect of inclination angle on the performance of a PCM-based flat-type heat sink. Appl Therm Eng. 2018;131:806–14.

    Article  CAS  Google Scholar 

  21. Rabie R, Emam M, Ookawara S, Ahmed M. Thermal management of concentrator photovoltaic systems using new configurations of phase change material heat sinks. Sol Energy. 2019;183:632–52.

    Article  Google Scholar 

  22. Rahmanian S, Rahmanian-Koushkaki H, Omidvar P, Shahsavar A. Nanofluid-PCM heat sink for building integrated concentrated photovoltaic with thermal energy storage and recovery capability. Sustain Energy Technol Assess. 2021;46:101223.

    Google Scholar 

  23. Arshad A, Ali HM, Khushnood S, Jabbal M. Experimental investigation of PCM based round pin-fin heat sinks for thermal management of electronics: effect of pin-fin diameter. Int J Heat Mass Transf. 2018;117:861–72.

    Article  CAS  Google Scholar 

  24. Ali HM, Ashraf MJ, Giovannelli A, Irfan M, Irshad TB, Hamid HM, Hassan F, Arshad A. Thermal management of electronics: an experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs. Int J Heat Mass Transf. 2018;123:272–84.

    Article  CAS  Google Scholar 

  25. Righetti G, Doretti L, Zilio C, Longo GA, Mancin S. Experimental investigation of phase change of medium/high temperature paraffin wax embedded in 3D periodic structure. Int J Thermofluids. 2020;5–6:100035.

    Article  Google Scholar 

  26. Bahiraei M, Heshmatian S, Goodarzi M, Moayedi H. CFD analysis of employing a novel ecofriendly nanofluid in a miniature pin fin heat sink for cooling of electronic components: effect of different configurations. Adv Powder Technol. 2019;30:2503–16.

    Article  CAS  Google Scholar 

  27. Haghighi SS, Goshayeshi HR, Safaei MR. Natural convection heat transfer enhancement in new designs of plate-fin based heat sinks. Int J Heat Mass Transf. 2018;125:640–7.

    Article  Google Scholar 

  28. De Césaro Oliveski R, Becker F, Rocha LAO, Biserni C, Eberhardt GES. Design of fin structures for phase change material (PCM) melting process in rectangular cavities. J Energy Storage. 2021;35:102337.

    Article  Google Scholar 

  29. Debich B, El Hami A, Yaich A, Gafsi W, Walha L, Haddar M. Design optimization of PCM-based finned heat sinks for mechatronic components: a numerical investigation and parametric study. J Energy Storage. 2020;32:101960.

    Article  Google Scholar 

  30. Shaikh S, Lafdi K. C/C composite, carbon nanotube and paraffin wax hybrid systems for the thermal control of pulsed power in electronics. Carbon. 2010;48(3):813–24.

    Article  CAS  Google Scholar 

  31. Al Siyabi I, Khanna S, Mallick T, Sundaram S. Multiple phase change material (PCM) configuration for PCM-based heat sinks—an experimental study. Energies. 2018;11:1629.

    Article  Google Scholar 

  32. Huang P, Wei G, Cui L, Xu C, Du X. Numerical investigation of a dual-PCM heat sink using low melting point alloy and paraffin. Appl Therm Eng. 2021;189:116702.

    Article  CAS  Google Scholar 

  33. Mozafari M, Lee A, Mohammadpour J. Thermal management of single and multiple PCMs based heat sinks for electronics cooling. Therm Sci Eng Progress. 2021;23:100919.

    Article  CAS  Google Scholar 

  34. Kamkari B, Groulx D. Experimental investigation of melting behavior of phase change material in finned rectangular enclosures under different inclination angles. Exp Thermal Fluid Sci. 2018;97:94–108.

    Article  CAS  Google Scholar 

  35. Benard C, Gobin D, Zanoli A. Moving boundary problem: heat conduction in the solid phase of a phase-change material during melting driven by natural convection in the liquid. Int J Heat Mass Transf. 1986;29(11):1669–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was funded by RFBR and Tomsk region, Project Number 19-48-703034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Sheremet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondareva, N.S., Sheremet, M.A. Numerical study of PCMs arrangement effect on heat transfer performance in plate-finned heat sink for passive cooling system. J Therm Anal Calorim 147, 10305–10317 (2022). https://doi.org/10.1007/s10973-022-11296-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11296-6

Keywords

Navigation