Skip to main content
Log in

An experimental study on trapezoidal salt gradient solar pond using magnesium sulfate (MgSO4) salt and coal cinder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The salt gradient solar pond (SGSP) is used to store solar energy for low-temperature applications. This study investigates experimentally the density and temperature profile of Magnesium sulfate (MgSO4) in a trapezoidal-shaped SGSP. Four identical trapezoidal solar ponds were constructed by using plywood. The sides of the pond were completely covered with polythene sheets and given a black coating. The experiments were conducted using four identical solar ponds for seven days with different concentrations of magnesium sulfate and identified that the 16% concentration of MgSO4 (SGSP-M16) is the optimum concentration. Further, the experiment is extended to a 16% concentration of MgSO4 with coal cinder (SGSP-C). The temperature difference between the lower convective zone (LCZ) and upper convective zone (UCZ) is of about 13.7 °C and 17.6 °C for SGSP-M16 and SGSP-C, respectively. It is also observed that maximum temperatures of 54 °C and 59.1 °C in the heat storage zone for SGSP-M and SGSP-C, respectively. This higher temperature in SGSP-C is owing to the low volume heat capacity and low thermal diffusivity of the coal cinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

SGSP:

Salt gradient solar pond

A sp :

Surface area of the solar pond (m2)

A LCZ :

Top surface area of the LCZ (m2)

C p :

Thermal capacity of stored water (J kg1 K1)

h(x):

Amount of solar intensity reaching the depth x from top surface

I r :

Amount of solar irradiation (Wm2)

k w :

Thermal conductivity of brine solution (W m1 K1)

m :

Mass of water (kg)

LCZ:

Lower convective zone

NCZ:

Non-convective zone

UCZ:

Upper convective zone

Δt :

Time interval (secs)

Z ncz :

Height of NCZ (m)

T atm :

Ambient temperature (K)

T LCZ :

Temperature in LCZ (K)

References

  1. Dincer I, Yapicioglu A. Solar ponds. Amsterdam: Elsevier Ltd; 2018.

    Google Scholar 

  2. Kasaeian A, Sharifi S, Yan WM. Novel achievements in the development of solar ponds: a review. Sol Energy. 2018;174:189–206. https://doi.org/10.1016/j.solener.2018.09.010.

    Article  Google Scholar 

  3. Abdulsalam A, Idris A, Mohamed TA, Ahsan A. The development and applications of solar pond: a review. Desalin Water Treat. 2015;53(9):2437–49. https://doi.org/10.1080/19443994.2013.870710.

    Article  CAS  Google Scholar 

  4. Kooi CF. The steady-state salt gradient solar pond. Sol Energy. 1985;29(2):177. https://doi.org/10.1016/0038-092X(82)90181-5.

    Article  Google Scholar 

  5. Karim C, Jomâa SM, Akbarzadeh A. A laboratory experimental study of mixing the solar pond gradient zone. Sol Energy. 2010;85(2):404–17. https://doi.org/10.1016/j.solener.2010.10.010.

    Article  Google Scholar 

  6. Sayer AH, Monjezi AA, Campbell AN. Behaviour of a salinity gradient solar pond during two years and the impact of zonal thickness variation on its performance. Appl Therm Eng. 2018;130:1191–8. https://doi.org/10.1016/j.applthermaleng.2017.11.116.

    Article  Google Scholar 

  7. Zangrando F. A simple method to establish salt gradient solar ponds. Sol Energy. 1980;25:467–70.

    Article  Google Scholar 

  8. Aramesh M, Kasaeian A, Pourfayaz F, Wen D. Energy analysis and shadow modeling of a rectangular type salt gradient solar pond. Sol Energy. 2017;146:161–71. https://doi.org/10.1016/j.solener.2017.02.026.

    Article  Google Scholar 

  9. Sakhrieh A, Al-Salaymeh A. Experimental and numerical investigations of salt gradient solar pond under Jordanian climate conditions. Energy Convers Manag. 2013;65:725–8. https://doi.org/10.1016/j.enconman.2012.01.046.

    Article  CAS  Google Scholar 

  10. Banat FA, El-Sayed SE, El-Temtamy SA. Carnalite salt gradient solar ponds: an experimental study. Renew Energy. 1994;4(2):265–9. https://doi.org/10.1016/0960-1481(94)90014-0.

    Article  CAS  Google Scholar 

  11. Kurt H, Ozkaymak M, Binark AK. Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation. Appl Energy. 2006;83(4):324–42. https://doi.org/10.1016/j.apenergy.2005.03.001.

    Article  CAS  Google Scholar 

  12. Sathish D, Jegadheeswaran S. Experimental investigation on a novel composite salt gradient solar pond with an east–west side reflector. J Therm Sci Eng Appl. 2022;14(3):1087–101. https://doi.org/10.1115/1.4051243.

    Article  CAS  Google Scholar 

  13. Assari MR, Basirat Tabrizi H, Kavoosi Nejad A, Parvar M. Experimental investigation of heat absorption of different solar pond shapes covered with glazing plastic. Sol Energy. 2015;122:569–78. https://doi.org/10.1016/j.solener.2015.09.013.

    Article  Google Scholar 

  14. Dhindsa GS, Mittal MK. An investigation of double-glass-covered trapezoidal salt-gradient solar pond coupled with reflector. Int J Green Energy. 2018;15(2):57–68. https://doi.org/10.1080/15435075.2017.1421199.

    Article  Google Scholar 

  15. Liu H, Jiang L, Wu D, Sun W. Experiment and simulation study of a trapezoidal salt gradient solar pond. Sol Energy. 2015;122:1225–34. https://doi.org/10.1016/j.solener.2015.09.006.

    Article  Google Scholar 

  16. Goswami R, Das R. Investigation of thermal and electrical performance in a salt gradient solar pond. J Phys Conf Ser. 2019;1240(1):012111. https://doi.org/10.1088/1742-6596/1240/1/012111.

    Article  CAS  Google Scholar 

  17. Shah N-U-H, Arshad A, Khosa A, Ali H, Ali M. Thermal analysis of a mini solar pond of small surface area while extracting heat from lower convective layer. Therm Sci. 2017;23:166–166. https://doi.org/10.2298/tsci170129166s.

    Article  Google Scholar 

  18. Dayem AMA, Applications T, Bourgel-arab N, Shalaby H, Bourgel-arab N. Numerical simulation of salt gradient solar ponds. Int J Comput Eng Sci. 2004;5(3):673–9.

    Google Scholar 

  19. Wang H, Zou J, Cortina JL, Kizito J. Experimental and theoretical study on temperature distribution of adding coal cinder to bottom of salt gradient solar pond. Sol Energy. 2014;110:756–67. https://doi.org/10.1016/j.solener.2014.10.018.

    Article  Google Scholar 

  20. Assari MR, Basirat Tabrizi H, Jafar Gholi Beik A. Experimental studies on the effect of using phase change material in salinity-gradient solar pond. Sol Energy. 2015;122:204–14. https://doi.org/10.1016/j.solener.2015.07.053.

    Article  Google Scholar 

  21. Sarathkumar P, Sivaram AR, Rajavel R, PraveenKumar R, Krishnakumar SK. Experimental investigations on the performance of a solar pond by using encapsulated Pcm with nanoparticles. Mater Today Proc. 2017;4(2):2314–22. https://doi.org/10.1016/j.matpr.2017.02.080.

    Article  Google Scholar 

  22. Rghif Y, Zeghmati B, Bahraoui F. Modeling the influences of a phase change material and the Dufour effect on thermal performance of a salt gradient solar pond. Int J Thermal Sci. 2021. https://doi.org/10.1016/j.ijthermalsci.2021.106979.

    Article  Google Scholar 

  23. Hull JR, Bushnell DL, Sempsrote DG, Pena A. Ammonium sulfate solar pond: observations from small-scale experiments. Sol Energy. 1989;43(1):57–64. https://doi.org/10.1016/0038-092X(89)90100-X.

    Article  CAS  Google Scholar 

  24. Hull JR. Solar ponds using ammonium salts. Sol Energy. 1986;36(6):551–8.

    Article  CAS  Google Scholar 

  25. Subhakar D, Srinivasa Murthy S. Experiments on a magnesium chloride saturated solar pond. Renew Energy. 1991;1(5):655–60.

    Article  CAS  Google Scholar 

  26. Montala M, Cortinaa JL, Akbarzadeh A, Valderramaa C. Stability analysis of an industrial salinity gradient solar pond. Sol Energy. 2019;180:216–25.

    Article  Google Scholar 

  27. Pawar SH, Chapgaon AN. Fertilizer solar ponds as a clean source of energy: some observations from small scale experiments. Sol Energy. 1995;55(6):537–42. https://doi.org/10.1016/0038-092X(95)00096-A.

    Article  CAS  Google Scholar 

  28. Murthy GRR, Pandey KP. Comparative performance evaluation of fertilizer solar pond under simulated conditions. Renew Energy. 2003;28(3):455–66. https://doi.org/10.1016/S0960-1481(02)00046-0.

    Article  CAS  Google Scholar 

  29. Assari MR, Tahan MH, Jafar Gholi Beik A, Basirat Tabrizi H. Experimental study on thermal behavior of new mixed medium phase change material for improving productivity on salt gradient solar pond. J Therm Anal Calorim. 2022;147:971–85. https://doi.org/10.1007/s10973-020-10317-6.

    Article  CAS  Google Scholar 

  30. Tahat MA, Kodah ZH, Probert SD, Al-Tahaineh H. Performance of a portable mini solar-pond. Appl Energy. 2000;66(4):299–310. https://doi.org/10.1016/S0306-2619(00)00021-0.

    Article  CAS  Google Scholar 

  31. Karim C, Slim Z, Kais C, Joma SM, Akbarzadeh A. Experimental study of the salt gradient solar pond stability. Sol Energy. 2010;84(6):24–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dineshkumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dineshkumar, P., Raja, M. An experimental study on trapezoidal salt gradient solar pond using magnesium sulfate (MgSO4) salt and coal cinder. J Therm Anal Calorim 147, 10525–10532 (2022). https://doi.org/10.1007/s10973-022-11292-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11292-w

Keywords

Navigation