Skip to main content
Log in

Analysis of heat exchanger equipped with various twisted turbulator inserts utilizing tripartite hybrid nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper investigates the exergo-economic analysis of heat exchanger devices assisted with water-based different tripartite hybrid nanofluids (TPHNF) under various geometrical turbulator inserts modifications. Simulation is proceeded for tripartite hybrid nanofluids of mainly six various compositions based on the nanoparticles morphology variant and three different turbulators inserts at the core of plain tubes heat exchanger. Exergy, energy, environment and economy aspects with sustainability analysis of the device are studied with operating parameters. Investigation revealed that turbulator inserts with TPHNF result in a significant improvement in the performance of the device. The device inserts with DTTI in plain tubes using TPHNF 6 results in the highest 20.6% overall heat transfer coefficient, 18.1% exergy change, 2.74% exergy efficiency, 4.8% performance index, and higher sustainability index at low Reynolds number than without inserts; meanwhile, turbulator inserts yield to highest 47.8% operating cost and equivalent CO2 emissions. Result reveals that DTTI with TPHNF 6 should be preferred as working fluid as its PEC ranges highest 1.42–2.35, and THNF 2 working fluid should be least preferred due to its high operating cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(\mathop m\limits^{ \bullet }\) :

Mass flow rate

\(\dot{Q}\) :

Heat transfer rate (W)

Aa :

Airside surface

Aa :

Total surface

Af :

Fluid surface

Afin :

Fin surface

Afr :

Frontal surface of HX

Al2O3 :

Aluminum oxide

Cp :

Specific heat (J kg1 K1)

Dh :

Hydraulic diameter (mm)

ff :

Friction factor

h:

Heat transfer coefficient (Wm2 K1)

Nu:

Nusselt number

p:

Pressure (N m2)

Pd :

Dimpled pitch

Pl :

Longitudinal tube pitch

Pp :

Perforated pitch

Pt :

Transverse tube pitch

Re:

Reynolds number

T:

Temperature (K)

TiO2 :

Titanium oxide

Y :

Twisted pitch

ZnO:

Zinc oxide

τ :

Dynamic viscosity (kg m1 s1)

ρ :

Density (kg m3)

ω:

Volume fraction

ζ:

Shape coefficient

α :

Thermal conductivity (W m1 K1)

CF:

Colburn factor

CFR:

Coolant flow rate

DTTI:

Dimpled twisted turbulator insert

HX:

Heat exchanger

PEC:

Performance evaluation criteria

PT:

Plain tube

PTTI:

Perforated twisted turbulator insert

SI:

Sustainability index

SWCNT:

Single-walled carbon nanotube

TPHNF:

Tripartite hybrid nanofluid

TTI:

Twisted Turbulator insert

a :

Air

p :

Pump

pp :

Pumping power

pf:

Primary fluid

eff:

Effective

f:

Fluid

in:

Inlet

e:

Exit

max:

maximum

gen:

Generation

o:

Dead state

np:

nanoparticles

hnf:

Hybrid nanofluid

nf:

Nanofluid

References

  1. Liebenberg L, Meyer JP. In-tube passive heat transfer enhancement in the process industry. Appl Therm Eng. 2007;27:2713–26.

    Article  CAS  Google Scholar 

  2. Lei Y, Zheng F, Song C, Lyu Y. Improving the thermal-hydraulic performance of a circular tube by using punched delta-winglet vortex generators. Int J Heat Mass Transf. 2017;111:299–311.

    Article  Google Scholar 

  3. Eiamsa-ard S, Seemawute P, Wongcharee K. Influences of peripherally-cut twisted tape insert on heat transfer and thermal performance characteristics in laminar and turbulent tube flows. Exp Therm Fluid Sci. 2010;34:711–9.

    Article  Google Scholar 

  4. Murugesan P, Mayilsamy K, Suresh S, Srinivasan PS. Heat transfer and pressure drop characteristics in a circular tube fitted with and without V-cut twisted tape insert. Int Commun Heat Mass Transf. 2011;38:329–34.

    Article  Google Scholar 

  5. Murugesan P, Mayilsamy K, Suresh S. Heat transfer in tubes fitted with trapezoidal-cut and plain twisted tape inserts. Chem Eng Commun. 2011;198:886–904.

    Article  CAS  Google Scholar 

  6. Vaisi A, Moosavi R, Lashkari M, Soltani MM. Experimental investigation of perforated twisted tapes turbulator on thermal performance in double pipe heat exchangers. Chem Eng Process Intens. 2020;154:108028.

    Article  CAS  Google Scholar 

  7. Chu WX, Tsai CA, Lee BH, Cheng KY, Wang CC. Experimental investigation on heat transfer enhancement with twisted tape having various V-cut configurations. Appl Therm Eng. 2020;172:115148.

    Article  Google Scholar 

  8. Hasanpour A, Farhadi M, Sedighi K. Intensification of heat exchangers performance by modified and optimized twisted tapes. Chem Eng Process Intens. 2017;120:276–85.

    Article  CAS  Google Scholar 

  9. Vaisi A, Javaherdeh K, Moosavi R. Experimental investigation of the thermal performance in a single-component two-phase flow in multistream multi-fluid plate-fin heat exchangers. Int J Therm Sci. 2022;171:107194.

    Article  Google Scholar 

  10. Javaherdeh K, Vaisi A, Moosavi R, Esmaeilpour M. Experimental and numerical investigations on louvered fin-and-tube heat exchanger with variable geometrical parameters. J Therm Sci Eng Appl. 2017;2:1–9.

    Google Scholar 

  11. Esfe MH, Bahiraei M, Mahian O. Experimental study for developing an accurate model to predict viscosity of CuO–ethylene glycol nanofluid using genetic algorithm based neural network. Powder Technol. 2018;338:383–90.

    Article  Google Scholar 

  12. Akhavan-Behabadi MA, Kumar R, Mohammadpour A, Jamali-Asthiani M. Effect of twisted tape insert on heat transfer and pressure drop in horizontal evaporators for the flow of R-134a. Int J Refrig. 2009;32:922–30.

    Article  CAS  Google Scholar 

  13. Moravej M, Bozorg MV, Guan Y, Li LK, Doranehgard MH, Hong K, Xiong Q. Enhancing the efficiency of a symmetric flat-plate solar collector via the use of rutile TiO2-water nanofluids. Sust Energy Technol Assess. 2020;40:100783.

    Google Scholar 

  14. Hussein OA, Habib K, Muhsan AS, Saidur R, Alawi OA, Ibrahim TK. Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid. Sol Energy. 2020;1(204):208–22.

    Article  Google Scholar 

  15. Goodarzi M, Tlili I, Tian Z, Safaei MR. Efficiency assessment of using graphene nanoplatelets-silver/water nanofluids in microchannel heat sinks with different cross-sections for electronics cooling. Int. J. Num. Meth. Heat Fluid Flow. 2019; 22.

  16. Ambreen T, Saleem A, Ali HM, Shehzad SA, Park CW. Performance analysis of hybrid nanofluid in a heat sink equipped with sharp and streamlined micro pin-fins. Powder Technol. 2019;355:552–63.

    Article  CAS  Google Scholar 

  17. Maghrabie HM, Elsaid K, Sayed ET, Abdelkareem MA, Wilberforce T, Ramadan M, Olabi AG. Intensification of heat exchanger performance utilizing nanofluids. Int J Thermofluids. 2021;10:100071.

    Article  Google Scholar 

  18. Sahu M, Sarkar J. Steady-state energetic and exergetic performances of single-phase natural circulation loop with hybrid nanofluids. J Heat Transf. 2019;141:82401.

    Article  Google Scholar 

  19. Goudarzi K, Jamali H. Heat transfer enhancement of Al2O3-EG nanofluid in a car radiator with wire coil inserts. Appl Therm Eng. 2017;118:510–7.

    Article  CAS  Google Scholar 

  20. Albadr J, Tayal S, Alasadi M. Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations. Case Stud Therm Eng. 2013;1:38–44.

    Article  Google Scholar 

  21. Salman SD, Kadhum AA, Takriff MS, Mohamad AB. CFD analysis of heat transfer and friction factor characteristics in a circular tube fitted with quadrant-cut twisted tape inserts. Math Prob Eng; 2013.

  22. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct–a numerical study. Appl Therm Eng. 2018;130:135–48.

    Article  CAS  Google Scholar 

  23. Eiamsa-ard S, Wongcharee K, Kunnarak K, Kumar M, Chuwattabakul V. Heat transfer enhancement of TiO2 -water nanofluid flow in dimpled tube with twisted tape insert. Heat Mass Transf. 2019;55:2987–3001.

    Article  CAS  Google Scholar 

  24. Singh SK, Sarkar J. Improving hydrothermal performance of double-tube heat exchanger with modified twisted tape inserts using hybrid nanofluid. J Therm Anal Calorim. 2020;5:1–7.

    Google Scholar 

  25. Plant RD, Hodgson GK, Impellizzeri S, Saghir MZ. Experimental and numerical investigation of heat enhancement using a hybrid nanofluid of copper oxide/alumina nanoparticles in water. J Therm Anal Calorim. 2020;141:1951–68.

    Article  CAS  Google Scholar 

  26. Saysroy A, Eiamsa-ard S. Enhancing convective heat transfer in laminar and turbulent flow regions using multi-channel twisted tape inserts. Int J Therm Sci. 2017;121:55–74.

    Article  Google Scholar 

  27. Garoosi F, Hoseininejad F, Rashidi MM. Numerical study of heat transfer performance of nanofluids in a heat exchanger. Appl Therm Eng. 2016;105:436–55.

    Article  Google Scholar 

  28. Esmaeilzadeh E, Almohammadi H, Nokhosteen A, Motezaker A, Omrani AN. Study on heat transfer and friction factor characteristics of γ-Al2O3/water through circular tube with twisted tape inserts with different thicknesses. Int J Therm Sci. 2014;82:72–83.

    Article  CAS  Google Scholar 

  29. Hamid KA, Azmi WH, Mamat R, Sharma KV. Heat transfer performance of TiO2–SiO2 nanofluids in a tube with wire coil inserts. Appl Therm Eng. 2019;152:275–86.

    Article  Google Scholar 

  30. Reddy MC, Rao VV. Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts. Int Commun Heat Mass Transf. 2014;50:68–76.

    Article  Google Scholar 

  31. Nakhchi ME, Esfahani JA. Numerical investigation of turbulent CuO–water nanofluid inside heat exchanger enhanced with double V-cut twisted tapes. J Therm Anal Calorim. 2021;145:2535–45.

    Article  CAS  Google Scholar 

  32. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2018;134:2295–303.

    Article  CAS  Google Scholar 

  33. Bahiraei M, Mazaheri N, Aliee F. Second law analysis of a hybrid nanofluid in tubes equipped with double twisted tape inserts. Powder Technol. 2019;345:692–703.

    Article  CAS  Google Scholar 

  34. Heshmatian S, Bahiraei M. Numerical investigation of entropy generation to predict irreversibilities in nanofluid flow within a microchannel: effects of Brownian diffusion, shear rate and viscosity gradient. Chem Eng Sci. 2017;172:52–65.

    Article  CAS  Google Scholar 

  35. Li Z, Sheikholeslami M, Jafaryar M, Shafee A, Chamkha AJ. Investigation of nanofluid entropy generation in a heat exchanger with helical twisted tapes. J Mol Liqs. 2018;266:797–805.

    Article  CAS  Google Scholar 

  36. Tharayil T, Asirvatham LG, Dau MJ, Wongwises S. Entropy generation analysis of a miniature loop heat pipe with graphene–water nanofluid: thermodynamics model and experimental study. Int J Heat Mass Transf. 2017;106:407–21.

    Article  CAS  Google Scholar 

  37. Mousavi SM, Esmaeilzadeh F, Wang XP. Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO 2 aqueous ternary hybrid nanofluid. J Therm Anal Calorim. 2019;137:879–901.

    Article  CAS  Google Scholar 

  38. Xuan Z, Zhai Y, Ma M, Li Y, Wang H. Thermo-economic performance and sensitivity analysis of ternary hybrid nanofluids. J Mol Liqs. 2021;323:114889.

    Article  CAS  Google Scholar 

  39. Sundar LS, Chandra Mouli KV, Said Z, Sousa AC. Heat transfer and second law analysis of ethylene glycol-based ternary hybrid nanofluid under laminar flow. J Therm Sci Eng Appl. 2021;13:051021.

    Article  CAS  Google Scholar 

  40. Kashyap S, Sarkar J, Kumar A. Performance enhancement of regenerative evaporative cooler by surface alterations and using ternary hybrid nanofluids. Energy. 2021;225:120199.

    Article  CAS  Google Scholar 

  41. Sahoo RR, Kumar V. Impact of novel dissimilar shape ternary composition-based hybrid nanofluids on the thermal performance analysis of radiator. J Therm Sci Eng Appl. 2021;13:041002.

    Article  CAS  Google Scholar 

  42. Wang CC, Fu WL, Chang CT. Heat transfer and friction characteristics of typical wavy fin-and-tube heat exchangers. Exp Therm Fluid Sci. 1997;14:174–86.

    Article  CAS  Google Scholar 

  43. Gnielinski V, Forced convection ducts, in Heat Exchanger Design Handbook, Schlunder, E. U., Ed., Hemisphere, Washington, DC, 1983, 2.5.1–2.5.3.

  44. Manglik RM, Bergles AE. “Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: part II—transition and turbulent flows. J Heat Transf. 1993;115:890–6.

    Article  CAS  Google Scholar 

  45. Smithberg E, Landis F. Friction and forced convection heat-transfer characteristics in tubes with twisted tape swirl generators. J Heat Transf. 1964;86:39–48.

    Article  CAS  Google Scholar 

  46. Dagdevir T, Ozceyhan V. An experimental study on heat transfer enhancement and flow characteristics of a tube with plain, perforated and dimpled twisted tape inserts. Int J Therm Sci. 2021;159:106564.

    Article  CAS  Google Scholar 

  47. Hamid KA, Azmi WH, Nabil MF, Mamat R. Experimental investigation of nanoparticle mixture ratios on TiO2–SiO2 nanofluids heat transfer performance under turbulent flow. Int J Heat Mass Transf. 2018;118:617–27.

    Article  CAS  Google Scholar 

  48. Said Z, Assad ME, Hachicha AA, Bellos E, Abdelkareem MA, Alazaizeh DZ, Yousef BA. Enhancing the performance of automotive radiators using nanofluids. Renew Sust Energy Rev. 2019;112:183–94.

    Article  CAS  Google Scholar 

  49. Khan A, Ali HM, Nazir R, Ali R, Munir A, Ahmad B, Ahmad Z. Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in H 2 O–ethylene glycol mixture. J Therm Anal Calorim. 2019;138:3007–21.

    Article  CAS  Google Scholar 

  50. Mishra M, Das PK, Sarangi S. Second law based optimization of crossflow plate-fin heat exchanger design using genetic algorithm. Appl Therm Eng. 2009;29:2983–9.

    Article  Google Scholar 

  51. Rosen MA, Dincer I, Kanoglu M. Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy polic. 2008;36(1):128–37.

    Article  Google Scholar 

  52. Webb RL. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. Int J Heat Mass Transf. 1981;24:715–26.

    Article  Google Scholar 

  53. Caliskan H, Dincer I, Hepbasli A. Exergoeconomic, enviroeconomic and sustainability analyses of a novel air cooler. Energy Build. 2012;55:747–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Rekha Sahoo.

Ethics declarations

Conflict of interest

The authors declare to not have any known financial interest that influences the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Sahoo, R.R. Analysis of heat exchanger equipped with various twisted turbulator inserts utilizing tripartite hybrid nanofluids. J Therm Anal Calorim 147, 10845–10863 (2022). https://doi.org/10.1007/s10973-022-11274-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11274-y

Keywords

Navigation