Skip to main content
Log in

Thermal stability of the phases developed at high-pressure hydrothermal curing of class G cement with different pozzolanic and latent hydraulic additives

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Multicomponent cement pastes based on the Class G cement substituted by 30 mass% of binary or ternary mixtures of silica fume (SF), metakaolin (MK), and ground granulated blast-furnace slag (BFS) were submitted to hydrothermal curing at 150 °C and 18 MPa for 7 days. X-ray diffraction (XRD), Fourier Transform Infrared analyses in the mid-IR region (FTIR), and thermogravimetric-differential scanning calorimetry (TGA/DSC) were performed for evaluation of phase compositions and to assess their relation to compressive strength. The highest amount of mainly amorphous thermal stable C-S-H and C-A-(S)-H phases with the highest polymerization degree was formed by using 15 mass% SF–15 mass% MK mixture, which led to the lowest CaO/SiO2 (C/S) ratio and the highest compressive strength. Crystalline phases detected in this sample were also thermal stable tobermorite, hibschite, and katoite. The increase in the C/S ratio, as well as slowly reacting BFS, resulted in the transformation of polymerized structures of hydration products to the smaller units and lower degree of hydration followed by decreased compressive strength values. Undesired formation of crystalline α-C2SH, occurring also in the paste without additives addition, was proved in the composition with a higher amount of BFS and higher C/S ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A:

Al2O3

C:

CaO

C-A-H:

Calcium aluminate hydrate

C-A-S-H:

Calcium alumina silicate hydrate

C-S-H:

Calcium silicate hydrate

\({\overline{\text{C}}}\) :

CO2

F:

Fe2O3

FTIR/IR:

Fourier Transform Infrared spectroscopy

H:

H2O

M:

MgO

MIR:

Middle Infrared Spectroscopy

S:

SiO2

SF:

Silica fume

\({\overline{\text{S}}}\) :

SO3

TG:

Thermogravimetric analysis

XRD:

X-ray diffraction

References

  1. Richardson IG. The calcium silicate hydrates. Cem Concr Res. 2008;38(2):137–58. https://doi.org/10.1016/j.cemconres.2007.11.005.

    Article  CAS  Google Scholar 

  2. Bahafid S, Ghabezloo S, Duc M, Faure P, Sulem J. Effect of the hydration temperature on the microstructure of Class G cement: CSH composition and density. Cem Concr Res. 2017;95:270–81. https://doi.org/10.1016/j.cemconres.2017.02.008.

    Article  CAS  Google Scholar 

  3. Jeong YJ, Youm KS, Yun TS. Effect of nano-silica and curing conditions on the reaction rate of class G well cement exposed to geological CO2-sequestration conditions. Cem Concr Res. 2018;109:208–16. https://doi.org/10.1016/j.cemconres.2018.05.001.

    Article  CAS  Google Scholar 

  4. Mabeyo PE. Improving oil well cement strengths through the coupling of metakaolin and nanosilica. Upstream Oil and Gas Technology. 2021;7: 100048. https://doi.org/10.1016/j.upstre.2021.100048.

    Article  Google Scholar 

  5. Jiang T, Geng C, Yao X, Song W, Dai D, Yang T. Long-term thermal performance of oil well cement modified by silica flour with different particle sizes in HTHP environment. Constr Build Mater. 2021;296: 123701. https://doi.org/10.1016/j.conbuildmat.2021.123701.

    Article  CAS  Google Scholar 

  6. Pang X, Qin J, Sun L, Zhang G, Wang H. Long-term strength retrogression of silica-enriched oil well cement: A comprehensive multi-approach analysis. Cem Concr Res. 2021;144: 106424. https://doi.org/10.1016/j.cemconres.2021.106424.

    Article  CAS  Google Scholar 

  7. Agofack N, Ghabezloo S, Sulem J, Garnier A, Urbanczyk C. Experimental investigation of the early-age mechanical behaviour of oil-well cement paste. Cem Concr Res. 2019;117:91–102. https://doi.org/10.1016/j.cemconres.2019.01.001.

    Article  CAS  Google Scholar 

  8. Harker RI. Dehydration Series in the System CaSiO3—SiO2—H2O. J Am Ceram Soc. 1964;47(10):521–9. https://doi.org/10.1111/j.1151-2916.1964.tb13802.x.

    Article  CAS  Google Scholar 

  9. Pistorius CW. Thermal decomposition of portlandite and xonotlite to high pressures and temperatures. Am J Sci. 1963;261(1):79–87. https://doi.org/10.2475/ajs.261.1.79.

    Article  CAS  Google Scholar 

  10. Meducin F, Zanni H, Noik C, Hamel G, Bresson B. Tricalcium silicate (C3S) hydration under high pressure at ambient and high temperature (200 °C). Cem Concr Res. 2008;38(3):320–4. https://doi.org/10.1016/j.cemconres.2007.09.024.

    Article  CAS  Google Scholar 

  11. Kutchko BG, Strazisar BR, Huerta N, Lowry GV, Dzombak DA, Thaulow N. CO2 reaction with hydrated class H well cement under geologic sequestration conditions: Effects of flyash admixtures. Environ Sci Technol. 2009;43(10):3947–52. https://doi.org/10.1021/es803007e.

    Article  CAS  PubMed  Google Scholar 

  12. Bearden WG. Effect of temperature and pressure on the physical properties of cement. In: Oil-well Cementing practices in the United States. New York: API; 1959. pp. 49–59.

  13. Richardson IG. The nature of CSH in hardened cements. Cem Concr Res. 1999;29(8):1131–47. https://doi.org/10.1016/S0008-8846(99)00168-4.

    Article  CAS  Google Scholar 

  14. Hope BB. Autoclaved concrete containing flyash. Cem Concr Res. 1981;11(2):227–33. https://doi.org/10.1016/0008-8846(81)90064-8.

    Article  CAS  Google Scholar 

  15. Garbev K, Beuchle G, Schweike U, Merz D, Dregert O, Stemmermann P. Preparation of a novel cementitious material from hydrothermally synthesized C-S-H phases. J Am Ceram Soc. 2014;97:2298–307. https://doi.org/10.1111/jace.12920.

    Article  CAS  Google Scholar 

  16. Galvánková L, Másilko J, Solný T, Štěpánková E. Tobermorite synthesis under hydrothermal conditions. Procedia Eng. 2016;151:100–7. https://doi.org/10.1016/j.proeng.2016.07.394.

    Article  CAS  Google Scholar 

  17. Wang HY, Shie JJ. Effect of Autoclave Curing on the Compressive Strength and Elastic Modulus of Lightweight Aggregate Concrete. J ASTM Int. 2009;6:1–11. https://doi.org/10.1520/JAI101644.

    Article  Google Scholar 

  18. Siauciunas R, Baltakys K. Formation of gyrolite during hydrothermal synthesis in the mixtures of CaO and amorphous SiO2 or quartz. Cem Concr Res. 2004;34:2029–36. https://doi.org/10.1016/j.cemconres.2004.03.009.

    Article  CAS  Google Scholar 

  19. Meller N, Kyritsis K, Hall C. The mineralogy of the CaO–Al2O3–SiO2–H2O (CASH) hydroceramic system from 200 to 350 °C. Cem Concr Res. 2009;39:45–53. https://doi.org/10.1016/j.cemconres.2008.10.002.

    Article  CAS  Google Scholar 

  20. Wild S, Khatib JM, Jones A. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem Concr Res. 1996;26(10):1537–44. https://doi.org/10.1016/0008-8846(96)00148-2.

    Article  CAS  Google Scholar 

  21. Saraya MESI. Study physico-chemical properties of blended cements containing fixed amount of silica fume, blast furnace slag, basalt and limestone, a comparative study. Constr Build Mater. 2014;72:104–12. https://doi.org/10.1016/j.conbuildmat.2014.08.071.

    Article  Google Scholar 

  22. Jiang G, Rong Z, Sun W. Effects of metakaolin on mechanical properties, pore structure and hydration heat of mortars at 0.17 w/b ratio. Constr Build Mater. 2015;93:564–72. doi:https://doi.org/10.1016/j.conbuildmat.2015.06.036

  23. Kuzielová E, Žemlička M, Janča M, Šiler P, Palou MT. Later stages of Portland cement hydration influenced by different portions of silica fume, metakaolin and ground granulated blast-furnace slag. J Therm Anal Calorim. 2020;142(1):339–48. https://doi.org/10.1007/s10973-020-09520-2.

    Article  CAS  Google Scholar 

  24. Kuzielová E, Žemlička M, Novotný R, Palou MT. Middle stage of Portland cement hydration influenced by different portions of silica fume, metakaolin and ground granulated blast-furnace slag. J Therm Anal Calorim. 2019;138(6):4119–26. https://doi.org/10.1007/s10973-019-08313-6.

    Article  CAS  Google Scholar 

  25. Kuzielová E, Žemlička M, Novotný R, Palou MT. Simultaneous effect of silica fume, metakaolin and ground granulated blast-furnace slag on the hydration of multicomponent cementitious binders. J Therm Anal Calorim. 2019;136(4):1527–37. https://doi.org/10.1007/s10973-018-7813-7.

    Article  CAS  Google Scholar 

  26. Lothenbach B. Thermodynamic equilibrium calculations in cementitious systems. Mater Struct. 2010;43(10):1413–33. https://doi.org/10.1617/s11527-010-9592-x.

    Article  CAS  Google Scholar 

  27. Palou MT, Kuzielová E, Žemlička M, Boháč M, Novotný R. The effect of curing temperature on the hydration of binary Portland cement. J Therm Anal Calorim. 2016;125(3):1301–10. https://doi.org/10.1007/s10973-016-5395-9.

    Article  CAS  Google Scholar 

  28. Kuzielová E, Žemlička M, Másilko J, Palou MT. Pore structure development of blended G-oil well cement submitted to hydrothermal curing conditions. Geothermics. 2017;68:86–93. https://doi.org/10.1016/j.geothermics.2017.03.001.

    Article  Google Scholar 

  29. Kuzielová E, Žemlička M, Másilko J, Palou MT. Effect of additives on the performance of Dyckerhoff cement, Class G, submitted to simulated hydrothermal curing. J Therm Anal Calorim. 2018;133(1):63–76. https://doi.org/10.1007/s10973-017-6806-2.

    Article  CAS  Google Scholar 

  30. Kuzielová E, Žemlička M, Másilko J, Palou MT. Development of G-oil well cement phase composition during long therm hydrothermal curing. Geothermics. 2019;80:129–37. https://doi.org/10.1016/j.geothermics.2019.03.002.

    Article  Google Scholar 

  31. Kuzielová E, Slaný M, Žemlička M, Másilko J, Palou MT. Phase composition of silica fume–Portland cement systems formed under hydrothermal curing evaluated by FTIR, XRD, and TGA. Materials. 2021;14(11):2786. https://doi.org/10.3390/ma14112786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Madej J, Madejová J, Jakubeková D. IR spectroscopic study of hydration of condensed silica fume modified cement pastes. Ceram-Silikaty. 1990;34:131–41.

    CAS  Google Scholar 

  33. Varga G. The structure of kaolinite and metakaolinite. Építőanyag. 2007;59(1):6–9. https://doi.org/10.14382/epitoanyag-jsbcm.2007.2.

    Article  Google Scholar 

  34. Lee S, Kim YJ, Moon HS. Energy-filtering transmission electron microscopy (EF-TEM) study of a modulated structure in metakaolinite, represented by a 14 Å modulation. J Am Ceram Soc. 2003;86(1):174–6. https://doi.org/10.1111/j.1151-2916.2003.tb03297.x.

    Article  CAS  Google Scholar 

  35. Li C, Sun H, Li L. A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements. Cem Concr Res. 2010;40(9):1341–9. https://doi.org/10.1016/j.cemconres.2010.03.020.

    Article  CAS  Google Scholar 

  36. Provis JL, van Deventer JSJ. Geopolymers: Structure, processing, properties and industrial applications. 1st ed. Cambridge: Woodhead Publishing Limited; 2009.

    Book  Google Scholar 

  37. MacKenzie KJD, Brew DRM, Fletcher RA, Vagana R. Formation of aluminosilicate geopolymers from 1:1 layer-lattice minerals pre-treated by various methods: a comparative study. J Mater Sci. 2007;42(12):4667–74. https://doi.org/10.1007/s10853-006-0173-x.

    Article  CAS  Google Scholar 

  38. White CE, Provis JL, Proffen T, Riley DP, van Deventer JSJ. Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin. Phys Chem Chem Phys. 2010;12(13):3239–45. https://doi.org/10.1039/b922993k.

    Article  CAS  PubMed  Google Scholar 

  39. Rouxhet P. Attribution of the OH stretching bands of kaolinite. Clay Miner. 1977;12(2):171–9. https://doi.org/10.1180/claymin.1977.012.02.07.

    Article  CAS  Google Scholar 

  40. Kljajević LM, Nenadović SS, Nenadović MT, Bundaleski NK, Todorović BŽ, Pavlović VB, Rakočević ZLj. Structural and chemical properties of thermally treated geopolymer samples. Ceram Int. 2017;43:6700–8. http://dx.doi.org/https://doi.org/10.1016/j.ceramint.2017.02.066

  41. Bich Ch, Ambroise J, Péra J. Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Appl Clay Sci. 2009;44(3–4):194–200. https://doi.org/10.1016/j.clay.2009.01.014.

    Article  CAS  Google Scholar 

  42. Karlsson C, Zanghellini E, Swenson J, Roling B, Bowron DT, Börjesson L. Structure of mixed alkali/alkaline-earth silicate glasses from neutron diffraction and vibrational spectroscopy. Phys Rev B. 2005;72(6): 064206. https://doi.org/10.1103/PhysRevB.72.064206.

    Article  CAS  Google Scholar 

  43. Khan MI, Khan HL, Azizli K, Sufian S, Man Z, Siyal AA, Muhammad N, Faiz ur Rehman M. The pyrolysis kinetics of the conversion of Malaysian kaolin to metakaolin. Appl Clay Sci. 2017;146:152–61. doi:https://doi.org/10.1016/j.clay.2017.05.017

  44. Souri A, Golestani-Fard F, Naghizadeh R, Veiseh S. An investigation on pozzolanic activity of Iranian kaolins obtained by thermal treatment. Appl Clay Sci. 2015;103:34–9. https://doi.org/10.1016/j.clay.2014.11.001.

    Article  CAS  Google Scholar 

  45. Stubičan V, Roy R. Infrared Spectra of Layer-Structure Silicates. J Am Ceram Soc. 2006;44(12):625–7. https://doi.org/10.1111/j.1151-2916.1961.tb11670.x.

    Article  Google Scholar 

  46. Stubičan V, Roy R. Proton retention in heated 1:1 clays studied by infrared spectroscopy, weight loss and deuterium uptake. J Phys Chem. 1961;65(8):1348–51. https://doi.org/10.1021/j100826a018.

    Article  Google Scholar 

  47. Russell JD. Infrared spectroscopy of inorganic compounds, In Willis H, editor. Laboratory Methods in Infrared Spectroscopy. New York: Wiley; 1987.

  48. Kristóf J, Mink J, Horváth E, Gábor M. Intercalation study of clay minerals by Fourier transform infrared spectrometry. Vib spectrosc. 1993;5(1):61–7. https://doi.org/10.1016/0924-2031(93)87055-X.

    Article  Google Scholar 

  49. Handke M, Mozgawa W. Vibrational spectroscopy of the amorphous silicates. Vib Spectrosc. 1993;5:75–84. https://doi.org/10.1016/0924-2031(93)87057-Z.

    Article  CAS  Google Scholar 

  50. Nenadović SS, Kljajević LM, Nešić MA, Petković MŽ, Trivunac KV, Pavlović VB. Structure analysis of geopolymers synthesized from clay originated from Serbia. Environ Earth Sci. 2017;76(2):79. https://doi.org/10.1007/s12665-016-6360-4.

    Article  CAS  Google Scholar 

  51. Shimoda K, Tobu Y, Kanehashi K, Nemoto T, Saito K. Total understanding of the local structures of an amorphous slag: Perspective from multi-nuclear (29Si, 27Al, 17O, 25Mg, and 43Ca) solid-state NMR. J Non-Cryst Solids. 2008;354(10–11):1036–43. https://doi.org/10.1016/j.jnoncrysol.2007.08.010.

    Article  CAS  Google Scholar 

  52. Haha MB, Lothenbach B, Le Saout G, Winnefeld F. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part II: Effect of Al2O3. Cem Concr Res. 2012;42(1):74–83. https://doi.org/10.1016/j.cemconres.2011.08.005.

    Article  CAS  Google Scholar 

  53. Schneider J, Cincotto MA, Panepucci H. 29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes. Cem Concr Res. 2001;31(7):993–1001. https://doi.org/10.1016/S0008-8846(01)00530-0.

    Article  CAS  Google Scholar 

  54. Sugama T, Pyatina T. Alkali-activated cement composites for high temperature geothermal wells. Irvine: Scientific Research Publishing; 2017.

    Google Scholar 

  55. Heikal M, Nassar MY, El-Sayed G, Ibrahim SM. Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag. Constr Build Mater. 2014;69:60–72. https://doi.org/10.1016/j.conbuildmat.2014.07.026.

    Article  CAS  Google Scholar 

  56. Taylor WR. Application of infrared spectroscopy to studies of silicate glass structure: examples from the melilite glasses and the systems Na2O-SiO2 and Na2O-Al2O3-SiO2. Proc Indian As-Earth. 1990;99(1):99–117. https://doi.org/10.1007/BF02871899.

    Article  CAS  Google Scholar 

  57. Fernández-Carrasco L, Torrens-Martín D, Morales LM, Martínez-Ramírez S. Infrared spectroscopy in the analysis of building and construction materials. In: Theophanides T, editor. Infrared spectroscopy–materials science engineering and technology. Rijeka: InTech; 2012. p. 369–82. https://doi.org/10.5772/36186.

    Chapter  Google Scholar 

  58. Boikova AI, Domansky AI, Paramonova VA, Stavitskaja GP, Nikushchenko VM. The influence of Na2O on the structure and properties of 3CaO·Al2O3. Cem Concr Res. 1977;7(5):483–92. https://doi.org/10.1016/0008-8846(77)90110-7.

    Article  CAS  Google Scholar 

  59. Mondal P, Jeffery JW. The crystal structure of tricalcium aluminate, Ca3Al2O6. Acta Crystallogr B. 1975;31:689–97. https://doi.org/10.1107/S0567740875003639.

    Article  Google Scholar 

  60. Wang S, Zhang D, Ma X, Zhang G, Jia Y, Hatada K. Spectroscopic and DFT study on the species and local structure of arsenate incorporated in gypsum lattice. Chem Geol. 2017;460:46–53. https://doi.org/10.1016/j.chemgeo.2017.04.011.

    Article  CAS  Google Scholar 

  61. Liu Y. Raman, Mid-IR, and NIR spectroscopic study of calcium sulfates and mapping gypsum abundances in Columbus Crater. Mars Planet Space Sci. 2018;163:35–41. https://doi.org/10.1016/j.pss.2018.04.010.

    Article  CAS  Google Scholar 

  62. Diez SG, Manchobas-Pantoja B, Carmona-Quiroga PM, Blanco-Varela MT. Effect of BaCO3 on C3A hydration. Cem Concr Res. 2015;73:70–8. https://doi.org/10.1016/j.cemconres.2015.03.009.

    Article  CAS  Google Scholar 

  63. Escribano R, Timón V, Gálvez O, Maté B, Moreno Alba MA, Herrero VJ. On the infrared activation of the breathing mode of methane in ice. Phys Chem Chem Phys. 2014;16(31):16694–700. https://doi.org/10.1039/c4cp01573h.

    Article  CAS  PubMed  Google Scholar 

  64. Mendes A, Gates WP, Sanjayan JG, Collins F. NMR, XRD, IR and synchrotron NEXAFS spectroscopic studies of OPC and OPC/slag cement paste hydrates. Mater Struct. 2011;44:1773–91. https://doi.org/10.1617/s11527-011-9737-6.

    Article  CAS  Google Scholar 

  65. Bensted J, Varma SP. Some applications of infrared and Raman spectroscopy in cement chemistry. Part 3—hydration of Portland cement and its constituents. Cem Technol. 1974;5(5):440–5.

    CAS  Google Scholar 

  66. Garbev K, Gasharova B, Beuchle G, Kreisz S, Stemmermann P. First observation of α-Ca2[SiO3(OH)](OH)–Ca6[Si2O7][SiO4](OH)2 phase transformation upon thermal treatment in air. J Am Ceram Soc. 2008;91:263–71. https://doi.org/10.1111/j.1551-2916.2007.02115.x.

    Article  CAS  Google Scholar 

  67. Yu P, Kirkpatrick RJ, Poe B, McMillan PF, Cong X. Structure of calcium silicate hydrate (C-S-H): Near-, Mid-, and Far-infrared spectroscopy. J Am Ceram Soc. 1999;82:742–8. https://doi.org/10.1111/j.1151-2916.1999.tb01826.x.

    Article  CAS  Google Scholar 

  68. Rodriguez-Blanco JD, Shaw S, Benning LG. The kinetics and mechanisms of amorphous calcium carbonate (ACC) Crystallization to Calcite. Via Vaterite Nanoscale. 2010;3:265–71. https://doi.org/10.1039/c0nr00589d.

    Article  CAS  PubMed  Google Scholar 

  69. Vagenas NV, Gatsouli A, Kontoyannis CG. Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta. 2003;59(4):831–6. https://doi.org/10.1016/S0039-9140(02)00638-0.

    Article  CAS  PubMed  Google Scholar 

  70. Ylmén R, Jäglid U. Carbonation of portland cement studied by diffuse reflection fourier transform infrared spectroscopy. Int J Concr Struct M. 2014;7:119–25. https://doi.org/10.1007/s40069-013-0039-y.

    Article  CAS  Google Scholar 

  71. García-Lodeiro I, Fernández-Jiménez A, Blanco MT, Palomo A. FTIR study of the sol–gel synthesis of cementitious gels: C-S-H and N–A–S–H. J Sol-Gel Sci Technol. 2008;45(1):63–72. https://doi.org/10.1007/s10971-007-1643-6.

    Article  CAS  Google Scholar 

  72. Mozgawa W, Sitarz M. Vibrational spectra of aluminosilicate ring structures. J Mol Struct. 2002;614(1–3):273–9. https://doi.org/10.1016/S0022-2860(02)00261-2.

    Article  CAS  Google Scholar 

  73. Passaglia E, Rinaldi R. Katoite, a new member of the Ca3Al2(SiO4)3-Ca3Al2(OH)12 series and a new nomenclature for the hydrogrossular group of minerals. Bull Mineral. 1984;107:605–18. https://doi.org/10.3406/bulmi.1984.7804.

    Article  CAS  Google Scholar 

  74. Antoni M, Rossen J, Martirena F, Scrivener K. Cement substitution by a combination of metakaolin and limestone. Cem Concr Res. 2012;42(12):1579–89. https://doi.org/10.1016/j.cemconres.2012.09.006.

    Article  CAS  Google Scholar 

  75. Snellings R. Solution-controlled dissolution of supplementary cementitious material glasses at pH 13: the effect of solution composition on glass dissolution rates. J Am Ceram Soc. 2013;96(8):2467–75. https://doi.org/10.1111/jace.12480.

    Article  CAS  Google Scholar 

  76. Briki Y, Avet F, Zajac M, Bowen P, Haha MB, Scrivener K. Understanding of the factors slowing down metakaolin reaction in limestone calcined clay cement (LC3) at late ages. Cem Concr Res. 2021;146: 106477. https://doi.org/10.1016/j.cemconres.2021.106477.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the courtesy of APVV-19-0490, APVV-15-0631, Slovak Grant Agency VEGA No. 2/0032/21 and 2/0017/21, and The Czech Science Foundation No. GA19-16646S.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Eva Kuzielová; Methodology: Eva Kuzielová, Matúš Žemlička, Michal Slaný, Jiří Másilko, Pavel Šiler, Formal analysis and investigation: Eva Kuzielová, Matúš Žemlička, Michal Slaný, Jiří Másilko, Pavel Šiler; Writing—original draft preparation: Eva Kuzielová; Writing—review and editing: Eva Kuzielová, Martin T. Palou; Funding acquisition: Eva Kuzielová, Pavel Šiler, Martin T. Palou; Supervision: Eva Kuzielová.

Corresponding author

Correspondence to Eva Kuzielová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzielová, E., Slaný, M., Žemlička, M. et al. Thermal stability of the phases developed at high-pressure hydrothermal curing of class G cement with different pozzolanic and latent hydraulic additives. J Therm Anal Calorim 147, 9891–9902 (2022). https://doi.org/10.1007/s10973-022-11254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11254-2

Keywords

Navigation