Skip to main content
Log in

An investigation of finding the best arrangement of hot steam injection holes in the 3D steam turbine blade cascade

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Steam turbines play a critical role in power generation systems. Therefore, increasing the efficiency of steam turbines is highly desirable, especially in LP stages. One of the suggested techniques to reduce wetness losses in LP stages is the hot steam injection. In the first section of the present study, the effect of 3D turbine blade span length on wet steam flow parameters is investigated. Then, the performance of various arrangements of hot steam injection holes (single slot, in-line no. 1, in-line no. 2, staggered no. 1, and staggered no. 2) is evaluated and compared. The results demonstrated that the in-line no. 1 arrangement is the best design for hot steam injection. In this arrangement, the wetness and condensation loss are reduced by 79% and 44%, respectively, and the kinetic energy loss is less than the other arrangements. However, the kinetic energy is still about 28% lower than in the no-injection case. Ultimately, excessive kinetic energy reduction due to hot steam injection is prevented by decreasing the injection pressure. As the injection pressure is reduced from 160 to 100 kPa, the kinetic energy, wetness, and condensation loss are reduced by 9%, 40%, and 17%, respectively, compared to the no-injection case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

A :

Area (m2)

B :

Second virial coefficient (m3 kg−1)

C :

Third virial coefficient (m6 kg−2)

C p :

Heat capacity at constant pressure (J kg−1 K−1)

C v :

Heat capacity at constant volume (J kg−1 K−1)

E :

Total energy (J)

EC:

Economic cost ($ h1)

H r :

HSI ratio (–)

h :

Static enthalpy (J kg−1)

h lv :

Specific enthalpy of evaporation (J kg−1)

I :

Nucleation rate (no. of droplets/m3 s)

K :

Kinetic energy (kg m2 s−3)

K r :

Kinetic energy ratio (–)

k :

Turbulent kinetic energy (m2 s−2)

k B :

Boltzmann constant (–)

L r :

Condensation loss ratio (–)

l :

Length of the nozzle’s divergent section (m)

M m :

Specific molecular mass of water (kg mol−1)

P :

Pressure (Pa)

Pr:

Prandtl number

q c :

Condensation coefficient (–)

r :

Radius (m)

R :

Gas constant (J kg−1 K−1)

S :

Super saturation ratio (–)

t :

Time (s)

T :

Temperature (K)

u :

Flow velocity (m s−1)

V :

Average volume (m3)

W r :

Wetness ratio (–)

\(\mathrm{HSI}\) :

Hot steam injection

β :

Liquid mass fraction (–)

γ :

The ratio of specific heat capacities (–)

Γ :

Mass production rate due to condensation (kg m−3 s−1)

δ ij :

Kronecker delta function

ε :

Turbulent kinetic energy dissipation rate (m2 s3)

η :

Number of droplets per unit volume (m−3)

θ :

Non-isothermal correction factor (–)

μ :

Viscosity (Pa s)

ρ :

Mixture density (kg m−3)

σ :

Liquid surface tension (N m−1)

τ :

Viscous shear stress tensor (Pa)

d :

Droplet

eff:

Effective

exit:

Exit surface

i, j :

Tensor notation

I :

Injection case

in:

Inlet

l :

Liquid phase

lv :

Liquid–vapor

M :

Main case (no injection)

out:

Outlet

sat:

Saturation

t :

Turbulence

v :

Vapor phase

0:

Stagnation

\(^{\overline{\,}}\) :

Average

\(^{\widetilde{\, }}\) :

Time averaged

\(^{\acute{\, }}\) :

Fluctuation

*:

Critical condition

References

  1. Bakhtar F, Mahpeykar MR, Abbas KK. An investigation of nucleating flows of steam in a cascade of turbine blading-theoretical treatment. J Fluids Eng. 1995;117(1):138–44.

    Article  Google Scholar 

  2. Bakhtar F, Mahpeykar MR. On the performance of a cascade of turbine rotor tip section blading in nucleating steam part 3: theoretical treatment. Proc Inst Mech Eng Part C J Mech Eng Sci. 1997;211(3):195–210.

    Article  Google Scholar 

  3. Bakhtar F, Rassam SY, Zhang G. On the performance of a cascade of turbin rotor tip section blading in wet steam part 4: droplet measurements. Proc Inst Mech Eng Part C J Mech Eng Sci. 1999;213(4):343–53.

    Article  Google Scholar 

  4. Mashmoushy H, Mahpeykar MR, Bakhtar F. Studies of nucleating and wet steam flows in two-dimensional cascades. Proc Inst Mech Eng Part C J Mech Eng Sci. 2004;218(8):843–58.

    Article  CAS  Google Scholar 

  5. Dykas S, Wróblewski W. Single- and two-fluid models for steam condensing flow modeling. Int J Multiph Flow. 2011;37(9):1245–53.

    Article  CAS  Google Scholar 

  6. Eberle T, Schatz M, Starzmann J, Grübel M, Casey M. Experimental study of the effects of temperature variation on droplet size and wetness fraction in a low-pressure model steam turbine. Proc Inst Mech Eng Part A J Power Energy. 2013;228(1):97–106.

    Article  Google Scholar 

  7. Wang C, Wang L, Zou T, Zhang H. Influences of area ratio and surface roughness on homogeneous condensation in ejector primary nozzle. Energy Convers Manag. 2017;149:168–74.

    Article  Google Scholar 

  8. Yang Y, Walther JH, Yan Y, Wen C. CFD modeling of condensation process of water vapor in supersonic flows. Appl Therm Eng. 2017;115:1357–62.

    Article  Google Scholar 

  9. Zhang G, Zhang S, Zhou Z, Li Y, Wang L, Liu C. Numerical study of condensing flow based on the modified model. Appl Therm Eng. 2017;127:1206–14.

    Article  Google Scholar 

  10. Min D, Kim H, Lee H, Lee C, Kim C. Accurate and efficient computations of phase-changing flows in thermal vapor compressors. Appl Therm Eng. 2018;128:320–34.

    Article  Google Scholar 

  11. Ding H, Li Y, Lakzian E, Wen C, Wang C. Entropy generation and exergy destruction in condensing steam flow through turbine blade with surface roughness. Energy Convers Manag. 2019;196:1089–104.

    Article  Google Scholar 

  12. Hric V, Halama J. On the numerical solution of non-equilibrium condensation of steam in nozzles. Adv Comput Math. 2019;45(4):2147–62.

    Article  Google Scholar 

  13. Salmani F, Mahpeykar MR. Dimensional analysis for estimating wetness terms of condensing steam using dry flow data. J Therm Anal Calorim. 2019;137(6):2121–34.

    Article  CAS  Google Scholar 

  14. Wen C, Karvounis N, Walther JH, Yan Y, Feng Y, Yang Y. An efficient approach to separate CO2 using supersonic flows for carbon capture and storage. Appl Energy. 2019;238:311–9.

    Article  CAS  Google Scholar 

  15. Yang Y, Zhu X, Yan Y, Ding H, Wen C. Performance of supersonic steam ejectors considering the nonequilibrium condensation phenomenon for efficient energy utilisation. Appl Energy. 2019;242:157–67.

    Article  Google Scholar 

  16. Salmani F, Mahpeykar MR, Rad EA. Estimating heat release due to a phase change of high-pressure condensing steam using the Buckingham Pi theorem. Eur Phys J Plus. 2019;134(1):1–18.

    Article  CAS  Google Scholar 

  17. Wen C, Gong L, Ding H, Yang Y. Steam ejector performance considering phase transition for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system. Appl Energy. 2020;279:115831.

    Article  Google Scholar 

  18. Wen C, Karvounis N, Walther JH, Ding H, Yang Y. Non-equilibrium condensation of water vapour in supersonic flows with shock waves. Int J Heat Mass Transf. 2020;149:119109.

    Article  Google Scholar 

  19. Wen C, Ding H, Yang Y. Optimisation study of a supersonic separator considering nonequilibrium condensation behaviour. Energy Convers Manag. 2020;222:113210.

    Article  Google Scholar 

  20. Zhang G, Dykas S, Yang S, Zhang X, Li H, Wang J. Optimization of the primary nozzle based on a modified condensation model in a steam ejector. Appl Therm Eng. 2020;171:115090.

    Article  Google Scholar 

  21. Salmani F, Amiri Rad E, Mahpeykar MR. Investigation effects of roughness in wet steam flow with Buckingham Pi-theorem. J Therm Anal Calorim. 2022;147:3803–13.

  22. Amiri Rad E, Mahpeykar MR, Teymourtash AR. Evaluation of simultaneous effects of inlet stagnation pressure and heat transfer on condensing water-vapor flow in a supersonic Laval nozzle. Sci Iran. 2013;20(1):141–51.

    Article  Google Scholar 

  23. Vatanmakan M, Lakzian E, Mahpeykar MR. Investigating the entropy generation in condensing steam flow in turbine blades with volumetric heating. Energy. 2018;147:701–14.

    Article  Google Scholar 

  24. Hosseini R, Lakzian E. Optimization volumetric heating in condensing steam flow by a novel method. J Therm Anal Calorim. 2019;140(5):2421–33.

    Article  Google Scholar 

  25. Hoseinzade D, Lakzian E, Hashemian A. A blackbox optimization of volumetric heating rate for reducing the wetness of the steam flow through turbine blades. Energy. 2021;220:119751.

    Article  Google Scholar 

  26. Mirhoseini MS, Boroomand M. Multi-objective optimization of hot steam injection variables to control wetness parameters of steam flow within nozzles. Energy. 2017;141:1027–37.

    Article  Google Scholar 

  27. Mirhoseini MS, Boroomand M. Control of wetness fraction and liquid droplet size in wet steam two phase flows with hot steam injection. Meccanica. 2017;53(1–2):193–207.

    Google Scholar 

  28. Aliabadi MAF, Lakzian E, Khazaei I, Jahangiri A. A comprehensive investigation of finding the best location for hot steam injection into the wet steam turbine blade cascade. Energy. 2020;190:116397.

    Article  Google Scholar 

  29. Faghih Aliabadi MA, Jahangiri A, Khazaee I, Lakzian E. Investigating the effect of water nano-droplets injection into the convergent-divergent nozzle inlet on the wet steam flow using entropy generation analysis. Int J Therm Sci. 2020;149:106181.

    Article  CAS  Google Scholar 

  30. Dolatabadi AM, Masoumi S, Lakzian E. Optimization variables of the injection of hot-steam into the non-equilibrium condensing flow using TOPSIS method. Int Commun Heat Mass Transf. 2021;129:105674.

    Article  Google Scholar 

  31. Noori Rahim Abadi SMA, Ahmadpour A, Abadi SMNR, Meyer JP. CFD-based shape optimization of steam turbine blade cascade in transonic two phase flows. Appl Therm Eng. 2017;112:1575–89.

    Article  CAS  Google Scholar 

  32. Zhang G, Wang L, Zhang S, Li Y, Zhou Z. Effect evaluation of a novel dehumidification structure based on the modified model. Energy Convers Manag. 2018;159:65–75.

    Article  Google Scholar 

  33. Zhang G, Wang F, Wang D, Wu T, Qin X, Jin Z. Numerical study of the dehumidification structure optimization based on the modified model. Energy Convers Manag. 2019;181:159–77.

    Article  Google Scholar 

  34. Wen C, Yang Y, Ding H, Sun C, Yan Y. Wet steam flow and condensation loss in turbine blade cascades. Appl Therm Eng. 2021;189:116748.

    Article  Google Scholar 

  35. Park JS, Lee DH, Rhee D-H, Kang SH, Cho HH. Heat transfer and film cooling effectiveness on the squealer tip of a turbine blade. Energy. 2014;72:331–43.

    Article  Google Scholar 

  36. Satta F, Tanda G. Effect of discrete-hole arrangement on film-cooling effectiveness for the endwall of a turbine blade cascade. Appl Therm Eng. 2015;91:507–14.

    Article  Google Scholar 

  37. Bashir MH, Shiau C-C, Han J-C. Film cooling effectiveness for three-row compound angle hole design on flat plate using PSP technique. Int J Heat Mass Transf. 2017;115:918–29.

    Article  Google Scholar 

  38. Gao W-J, Yue Z-F, Li L, Zhao Z-N, Tong F-J. Numerical simulation on film cooling with compound angle of blade leading edge model for gas turbine. Int J Heat Mass Transf. 2017;115:839–55.

    Article  Google Scholar 

  39. Cheng F-n, Zhang J-z, Chang H-p, Zhang J-y. Investigations of film-cooling effectiveness on the squealer tip with various film-hole configurations in a linear cascade. Int J Heat Mass Transf. 2018;117:344–57.

    Article  Google Scholar 

  40. Farokhipour A, Mansoori Z, Saffar-Avval M, Ahmadi G. Numerical modeling of sand particle erosion in return bends in gasparticle two-phase flow. Sci Iran. 2018;25:3231–42.

  41. Hu P, Cao L, Su J, Li Q, Li Y. Distribution characteristics of salt-out particles in steam turbine stage. Energy. 2020;192:116626.

    Article  Google Scholar 

  42. Zhao A, Guo S, Qi X, Gao S, Sun J. Numerical study on the nano-droplets formation process from superheated steam condensation flow effected by nozzle convergent profile. Int Commun Heat Mass Transf. 2019;104:109–17.

    Article  CAS  Google Scholar 

  43. Hill PG. Condensation of water vapour during supersonic expansion in nozzles. J Fluid Mech. 2006;25(3):593–620.

    Article  Google Scholar 

  44. Young JB. Two-dimensional, nonequilibrium, wet-steam calculations for nozzles and turbine cascades. J Turbomach. 1992;114(3):569–79.

    Article  Google Scholar 

  45. Young JB. An equation of state for steam for turbomachinery and other flow calculations. J Eng Gas Turbines Power. 1988;110(1):1–7.

    Article  CAS  Google Scholar 

  46. Kawagishi H, Onoda A, Shibukawa N, Niizeki Y. Development of moisture loss models in steam turbines. Heat Transf Asian Res. 2013;42(7):651–64.

    Article  Google Scholar 

  47. Ergunova O, Lizunkov V, Blaginin V, Politsinskaya E, Shaykina OIJIJoEE, and Policy. Formation of the price mechanism for energy resources in Russia and the countries of the European Union. Int J Energy Econ Policy (IJEEP). 2018;8:122–7.

    Google Scholar 

  48. Moore MJ, Walters PT, Crane RI, Davidson BJ. Predicting the fog drop size in wet steam turbines. Wet Steam. 1973;4:101–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmail Lakzian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafaei, A., Lakzian, E., Ahmadi, G. et al. An investigation of finding the best arrangement of hot steam injection holes in the 3D steam turbine blade cascade. J Therm Anal Calorim 147, 10595–10612 (2022). https://doi.org/10.1007/s10973-022-11242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11242-6

Keywords

Navigation