Skip to main content
Log in

Flame retardancy of EPDM/Kevlar fibre composites with zinc borate, magnesium hydroxide and ammonium polyphosphate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present work studies the influence of zinc borate (ZB), magnesium hydroxide (MH) and ammonium polyphosphate (APP) as flame retardants on the curing, mechanical, thermal and flammability performances of Kevlar fibre (KF)-reinforced ethylene propylene diene monomer (EPDM) rubber composites. The flame retardant EPDM/KF composites were prepared with variable ratio of ZB, MH and APP. Thereafter, physicomechanical and thermal properties of the fire retardant EPDM/KF composites were analysed with density analysis, tensile testing, TGA analysis, SEM and cone calorimeter tests. The TGA analysis and cone calorimeter tests showed the enhancement in the flame retardant properties of the EPDM/KF composites with the addition of combined fillers with respect to the virgin counterparts. The synergistic effect of ZB and APP containing flame retardant-incorporated composites exhibited a prominence in the thermal stability and fire retardancy. Heat release rate (HRR) and total heat release rate (THR) of the ZB and APP combined fire retardant-incorporated composites were lower than the virgin EPDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Christ C, Clark JR. A crystal-chemical classification of borate structures with emphasis on hydrated borates. Phys Chem Miner. 1977;2(1–2):59–87. https://doi.org/10.1007/BF00307525.

    Article  CAS  Google Scholar 

  2. Burns PC. Borate clusters and fundamental building blocks containing four polyhedra: why few clusters are utilized as fundamental building blocks of structures. Can Mineral. 1995;33:1167–76.

    CAS  Google Scholar 

  3. Grice JD, Burns PC, Hawthorne F. Borate minerals; II, A hierarchy of structures based upon the borate fundamental building block. Can Mineral. 1999;37(3):731–62.

    CAS  Google Scholar 

  4. Yang S, Lv G, Liu Y, Wang Q. Synergism of polysiloxane and zinc borate flame retardant polycarbonate. Polym Degrad Stab. 2013;98(12):2795–800. https://doi.org/10.1016/j.polymdegradstab.2013.10.017.

    Article  CAS  Google Scholar 

  5. Samyn F, Bourbigot S, Duquesne S, Delobel R. Effect of zinc borate on the thermal degradation of ammonium polyphosphate. Thermochim Acta. 2007;456(2):134–44. https://doi.org/10.1016/j.tca.2007.02.006.

    Article  CAS  Google Scholar 

  6. Bourbigot S, Le Bras M, Leeuwendal R, Shen KK, Schubert D. Recent advances in the use of zinc borates in flame retardancy of EVA. Polym Degrad Stab. 1999;64(3):419–25. https://doi.org/10.1016/S0141-3910(98)00130-X.

    Article  CAS  Google Scholar 

  7. Carpentier F, Bourbigot S, Le Bras M, Delobel R. Rheological investigations in fire retardancy: application to ethylene–vinyl-acetate copolymer–magnesium hydroxide/zinc borate formulations. Polym Int. 2000;49(10):1216–21. https://doi.org/10.1002/1097-0126(200010)49:10%3c1216::AID-PI515%3e3.0.CO;2-S.

    Article  CAS  Google Scholar 

  8. Rao TN, Hussain I, Koo BH. Effect of aluminum tri-hydroxide/zinc borate and aluminium tri-hydroxide/melamine flame retardant systems synergies on epoxy resin. Mater Today Proceed. 2020;27:2269–72. https://doi.org/10.1016/j.matpr.2019.09.110.

    Article  CAS  Google Scholar 

  9. Wang X, Li L, Tong Y, Dai Y, Chen W. Synthesis of Core/Shell Structured Zinc Borate/Silica and Its Surface Charring for Enhanced Flame Retardant Properties. Polym Degrad Stab. 2021;183: 109432. https://doi.org/10.1016/j.polymdegradstab.2020.109432.

    Article  CAS  Google Scholar 

  10. Liang J-Z. Tensile properties and fire residue morphology of flame-retarded-polypropylene composites. J Thermoplast Comp Mater. 2020. https://doi.org/10.1177/0892705720925127.

    Article  Google Scholar 

  11. George K, Panda BP, Biswal M, Mohanty S, Nayak SK. Ethylene propylene diene monomer rubber-based heat shielding materials for solid rocket motor Impact of Kevlar fiber reinforcement on the thermal and mechanical properties. Polym Adv Technol. 2020. https://doi.org/10.1002/pat.4857.

    Article  Google Scholar 

  12. George K, Mohanty S, Biswal M, Nayak SK. Thermal insulation behaviour of Ethylene propylene diene monomer rubber/kevlar fiber based hybrid composites containing Nanosilica for solid rocket motor insulation. J Appl Polym Sci. 2020. https://doi.org/10.1002/app.49934.

    Article  Google Scholar 

  13. Hassan A, Wahit MU, Chee CY. Mechanical and morphological properties of PP/NR/LLDPE ternary blend—effect of HVA-2. Polym Testing. 2003;22(3):281–90. https://doi.org/10.1016/S0142-9418(02)00100-9.

    Article  CAS  Google Scholar 

  14. Hashim R, Sulaiman O, Kumar R, Tamyez P, Murphy R, Ali Z. Physical and mechanical properties of flame retardant urea formaldehyde medium density fiberboard. J Mater Process Technol. 2009;209(2):635–40. https://doi.org/10.1016/j.jmatprotec.2008.02.036.

    Article  CAS  Google Scholar 

  15. Sain M, Park S, Suhara F, Law S. Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide. Polym Degrad Stab. 2004;83(2):363–7. https://doi.org/10.1016/S0141-3910(03)00280-5.

    Article  CAS  Google Scholar 

  16. Ramazani SA, Rahimi A, Frounchi M, Radman S. Investigation of flame retardancy and physical–mechanical properties of zinc borate and aluminum hydroxide propylene composites. Mater Des. 2008;29(5):1051–6. https://doi.org/10.1016/j.matdes.2007.04.003.

    Article  CAS  Google Scholar 

  17. Niemelä T, Niiranen H, Kellomäki M, Törmälä P. Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents. Part I: Initial mechanical properties and bioactivity. Acta Biomaterialia. 2005;1(2):235–42.

    Article  Google Scholar 

  18. Wang Z, Qu B, Fan W, Hu Y, Shen X. Effects of PE-g-DBM as a compatiblizer on mechanical properties and crystallization behaviors of magnesium hydroxide-based LLDPE blends. Polym Degrad Stab. 2002;76(1):123–8. https://doi.org/10.1016/S0141-3910(02)00004-6.

    Article  Google Scholar 

  19. Liu J, Zhang Y. Effect of ethylene-acrylic acid copolymer on flame retardancy and properties of LLDPE/EAA/MH composites. Polym Degrad Stab. 2011;96(12):2215–20. https://doi.org/10.1016/j.polymdegradstab.2011.09.010.

    Article  CAS  Google Scholar 

  20. Ismail H, Nizam J, Khalil HA. The effect of a compatibilizer on the mechanical properties and mass swell of white rice husk ash filled natural rubber/linear low density polyethylene blends. Polym Testing. 2001;20(2):125–33. https://doi.org/10.1016/S0142-9418(00)00013-1.

    Article  CAS  Google Scholar 

  21. Mae H, Omiya M, Kishimoto K. Effects of strain rate and density on tensile behavior of polypropylene syntactic foam with polymer microballoons. Mater Sci Eng, A. 2008;477(1–2):168–78. https://doi.org/10.1016/j.msea.2007.05.028.

    Article  CAS  Google Scholar 

  22. Nwanonenyi S, Obidiegwu M, Onuchukwu T, Egbuna I. Studies on the properties of linear low density polyethylene filled oyster shell powder. Int J Eng Sci. 2013;2(7):42–8.

    Google Scholar 

  23. Gillani QF, Ahmad F, Mutalib MA, Megat-Yusoff PS, Ullah S, Messet PJ, et al. Thermal degradation and pyrolysis analysis of zinc borate reinforced intumescent fire retardant coatings. Prog Org Coat. 2018;123:82–98. https://doi.org/10.1016/j.porgcoat.2018.05.007.

    Article  CAS  Google Scholar 

  24. Tai Q, Yuen RK, Yang W, Qiao Z, Song L, Hu Y. Iron-montmorillonite and zinc borate as synergistic agents in flame-retardant glass fiber reinforced polyamide 6 composites in combination with melamine polyphosphate. Compos A Appl Sci Manuf. 2012;43(3):415–22. https://doi.org/10.1016/j.compositesa.2011.10.012.

    Article  CAS  Google Scholar 

  25. Ullah S, Ahmad F, Shariff AM, Bustam MA, Gonfa G, Gillani QF. Effects of ammonium polyphosphate and boric acid on the thermal degradation of an intumescent fire retardant coating. Prog Org Coat. 2017;109:70–82. https://doi.org/10.1016/j.porgcoat.2017.04.017.

    Article  CAS  Google Scholar 

  26. Puri RG, Khanna A. Effect of cenospheres on the char formation and fire protective performance of water-based intumescent coatings on structural steel. Prog Org Coat. 2016;92:8–15. https://doi.org/10.1016/j.porgcoat.2015.11.016.

    Article  CAS  Google Scholar 

  27. Ng HY, Lu X, Lau SK. Thermal conductivity of boron nitride-filled thermoplastics: effect of filler characteristics and composite processing conditions. Polym Compos. 2005;26(6):778–90. https://doi.org/10.1002/pc.20151.

    Article  CAS  Google Scholar 

  28. Hull TR, Witkowski A, Hollingbery L. Fire retardant action of mineral fillers. Polym Degrad Stab. 2011;96(8):1462–9. https://doi.org/10.1016/j.polymdegradstab.2011.05.006.

    Article  CAS  Google Scholar 

  29. Balakrishnan H, Hassan A, Isitman NA, Kaynak C. On the use of magnesium hydroxide towards halogen-free flame-retarded polyamide-6/polypropylene blends. Polym Degrad Stab. 2012;97(8):1447–57. https://doi.org/10.1016/j.polymdegradstab.2012.05.011.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kesiya George.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, K., Mohanty, S., Biswal, M. et al. Flame retardancy of EPDM/Kevlar fibre composites with zinc borate, magnesium hydroxide and ammonium polyphosphate. J Therm Anal Calorim 147, 8189–8198 (2022). https://doi.org/10.1007/s10973-021-11148-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11148-9

Keywords

Navigation