Skip to main content

Advertisement

Log in

Thermo-oxidative investigation on SiO2 and SiO2–ZrO2 composites prepared by sol–gel route

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

SiO2, ZrO2 and SiO2–ZrO2 composites at different percentages of zirconia were synthesized by the sol–gel method and spectroscopically characterized by Fourier transform infrared (FTIR) spectroscopy. Different series of composites were prepared and analyzed, as it is and with a post-preparation conditioning at 600 and 1000 °C, respectively. The calcination were carried out to verify the changing in composite structure and whether these treatments will affect the subsequently characterization. In fact, silica, zirconia and their composites were than subjected to oxidative degradation up to 800 °C by the means of thermogravimetric analysis (TGA). Residues, obtained at 800 °C by the thermogravimetric (TG) scans, were analyzed by FTIR to evaluate the differences with the spectra of the composites obtained before TGA. TG curves were discussed to describe the thermal behavior of the prepared composites and to highlight the influence of zirconia amount on the composites degradation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eliaz N. Corrosion of metallic biomaterials: a review. Materials. 2019;12:407.

    Article  CAS  PubMed Central  Google Scholar 

  2. Mears DC. Metals in medicine and surgery. Int Metals Rev. 1977;22(1):119–55.

    CAS  Google Scholar 

  3. Khoo ZX, Teoh JEM, Liu Y, Chua CK, Yang S, An J, Leong KF, Yeong WY. 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual Phys Prototyping. 2015;10(3):103–22.

    Article  Google Scholar 

  4. Blanco I. The use of composite materials in 3D printing. J Compos Sci. 2020;4:42.

    Article  CAS  Google Scholar 

  5. Tosto C, Saitta L, Pergolizzi E, Blanco I, Celano G, Cicala G. Methods for the characterization of polyetherimide based materials processed by fused deposition modelling. Appl Sci. 2020;10(9):3195.

    Article  CAS  Google Scholar 

  6. Poologasundarampillai G, Nommeots-Nomm A. Materials for 3D printing in medicine: Metals, polymers, ceramics, hydrogels. 3D Printing in Medicine. 2017; chapter 4: 43–71.

  7. Ni J, Ling H, Zhang S, Wang Z, Peng Z, Benyshek C, Zan R, Miri AK, Li Z, Zhang X, Lee J, Lee K-J, Kim H-J, Tebon P, Hoffman T, Dokmeci MR, Ashammakhi N, Li X, Khademhosseini A. Three-dimensional printing of metals for biomedical applications. Mater Today Bio. 2019;3:100024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xia M, Sanjayan J. Method of formulating geopolymer for 3D printing for construction applications. Mater Des. 2016;110:382–90.

    Article  CAS  Google Scholar 

  9. Balamurugan A, Rajeswari S, Balossier G, Rebelo A, Ferreira J. Corrosion aspects of metallic implants—An overview. Mater Corros. 2008;59:855–69.

    Article  CAS  Google Scholar 

  10. Manivasagam G, Dhinasekaran D, Rajamanickam A. Biomedical implants: Corrosion and its prevention-a review. J Recent Patents Corros Sci. 2010;2(1):40–54.

    Article  CAS  Google Scholar 

  11. Asri R, Harun W, Samykano M, Lah N, Ghani S, Tarlochan F, Raza M. Corrosion and surface modification on biocompatible metals: A review. J Mater Sci Eng C. 2017;77:1261–74.

    Article  CAS  Google Scholar 

  12. Catauro M, Bollino F, Papale F. Biocompatibility improvement of titanium implants by coating with hybrid materials synthesized by sol-gel technique. J Biomed Mater Res Part A. 2014;102:4473–9.

    CAS  Google Scholar 

  13. Catauro M, Tranquillo E, Dal Poggetto G, Pasquali M, Dell’Era A, Vecchio CS. Influence of the heat treatment on the particles size and on the crystalline phase of TiO2 synthesized by sol-gel method. Materials. 2018;11(8):2364.

    Article  CAS  PubMed Central  Google Scholar 

  14. Coli P, Karlsson S. Fit of a new pressure-sintered zirconium dioxide coping. Int J Prosthodont. 2004;17:59–64.

    PubMed  Google Scholar 

  15. Evans A, Heuer A. Transformation toughening in ceramics: Martensitic transformations in crack-tip stress fields. J Am Ceram Soc. 1980;63:241–8.

    Article  CAS  Google Scholar 

  16. Gahlert M, Burtscher D, Grunert I, Kniha H, Steinhauser E. Failure analysis of fractured dental zirconia implants. Clin Oral Impl Res. 2012;23:287–93.

    Article  CAS  Google Scholar 

  17. Wu S, Brook RJ. Sintering additives for zirconia ceramics. Trans J Br Ceram Soc. 1983;82(6):200–5.

    CAS  Google Scholar 

  18. Ghyngazov SA, Shevelev SA. Effect of additives on sintering of zirconia ceramics. J Therm Anal Calorim. 2018;134:45–9.

    Article  CAS  Google Scholar 

  19. Grain CF. Phase relations in the ZKVMgO system. J Am Ceram Soc. 1967;50(6):288–90.

    Article  CAS  Google Scholar 

  20. Duwez P, Odell F, Brown FH. Stabilization of zirconia with calcia and magnesia. J Am Ceram Soc. 1952;35(5):107–13.

    Article  CAS  Google Scholar 

  21. Scott HG. Phase relations in the zirconia-yttria system. J Mater Sci. 1975;10:1527–35.

    Article  CAS  Google Scholar 

  22. Pyda W, Haberko K, Zurek Z. Zirconia stabilized with a mixture of the rare earth oxides. J European Ceram Soc. 1992;10:453–9.

    Article  CAS  Google Scholar 

  23. Log T, Cutler RA, Jue JF, Virkar AV. Polycrystalline t’-Zr02(Ln203) formed by displacive transformations. J Mater Sci. 1993;28:4503–9.

    Article  CAS  Google Scholar 

  24. Naskar MK, Ganguli D. Rare-earth doped zirconia fibres by sol-gel processing. J Mater Sci. 1996;31:6263–7.

    Article  CAS  Google Scholar 

  25. Fontinha IR, Salta MM, Zheludkevich ML, Ferreira MGS. EIS study of amine cured epoxy-silica-zirconia sol-gel coatings for corrosion protection of the aluminium alloy EN AW 6063. Port Electrochim Acta. 2013;31(6):307–19.

    Article  CAS  Google Scholar 

  26. Tamar Y, Mandler D. Corrosion inhibition of magnesium by combined zirconia silica sol-gel films. Electrochim Acta. 2008;53(16):5118–27.

    Article  CAS  Google Scholar 

  27. Catauro M, Dell’Era A, Vecchio CS. Synthesis, structural, spectroscopic and thermoanalytical study of sol-gel derived SiO2-CaO-P2O5 gel and ceramic materials. Thermochim Acta. 2016;625:20–7.

    Article  CAS  Google Scholar 

  28. Catauro M, Tranquillo E, Salzillo A, Capasso L, Illiano M, Sapio L, Naviglio S. Silica/Polyethylene glycol hybrid materials prepared by a sol-Gel method and containing chlorogenic acid. Molecules. 2018;23:2447.

    Article  CAS  PubMed Central  Google Scholar 

  29. Tranquillo E, Barrino F, Dal Poggetto G, Blanco I. Sol-gel synthesis of silica-based materials with different percentages of PEG or PCL and high chlorogenic acid content. Materials. 2019;12(1):155.

    Article  CAS  PubMed Central  Google Scholar 

  30. Pessoa R, Cerqueira M, Nasar R, Yoshida I. Synthesis of stabilized zirconia without dopants. Cerâmica. 2008;54:253–8.

    Article  CAS  Google Scholar 

  31. Długoń E, Pach K, Gawęda M, Jadach R, Wajda A, Leśniak M, Benko A, Dziadek M, Sowa M, Simka W. Anticorrosive ZrO2 and ZrO2-SiO2 layers on titanium substrates for biomedical applications. Surf Coat Technol. 2017;331:221–9.

    Article  CAS  Google Scholar 

  32. Ciesielczyk F, Goscianska J, Zdarta J, Jesionowski T. The development of zirconia/silica hybrids for the adsorption and controlled release of active pharmaceutical ingredients. Colloids Surf A. 2018;545:39–50.

    Article  CAS  Google Scholar 

  33. Fu L, Wu C, Grandfield K, Unosson E, Chang J, Engqvist H, Xia W. Transparent single crystalline ZrO2-SiO2 glass nanoceramic sintered by SPS. J Eur Ceram Soc. 2016;36:3487–94.

    Article  CAS  Google Scholar 

  34. Fatalla AA, Tukmachi MS, Jani GH. Assessment of some mechanical properties of PMMA/silica/zirconia nanocomposite as a denture base material. IOP Conf Series: Mater Sci Eng. 2020;987:012031.

    Article  CAS  Google Scholar 

  35. Su Z, Li M, Zhang L, Wang C, Zhang L, Xu J, Fu B. A novel porous silica-zirconia coating for improving bond performance of dental zirconia. J Zhejiang Univ Sci B. 2021;22:214–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. de Jager N, Münker TJAG, Guilardi LF, Jansen VJ, Sportel YGE, Kleverlaan CJ. The relation between impact strength and flexural strength of dental materials. J Mech Behav Biomed Mater. 2021;122:104658.

    Article  PubMed  Google Scholar 

  37. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Sun˜ol JJ. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  38. Catauro M, Barrino F, Dal Poggetto G, Milazzo M, Blanco I, Vecchio CS. Structure, drug absorption, bioactive and antibacterial properties of sol-gel SiO2/ZrO2 materials. Ceram Int. 2020;46:29459–65.

    Article  CAS  Google Scholar 

  39. Vecchio Ciprioti S, Catauro M, Bollino F, Tuffi R. Thermal behavior and dehydration kinetic study of SiO2 /PEG hybrid gel glasses. Polym Eng Sci. 2017;57:606–12.

    Article  CAS  Google Scholar 

  40. Karmakar B, De G, Ganguli D. Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS. J Non-Cryst Solids. 2000;272:119–26.

    Article  CAS  Google Scholar 

  41. Awadh SM, Yaseen ZM. Investigation of silica polymorphs stratified in siliceous geode using FTIR and XRD methods. Mater Chem Phys. 2019;228:45–50.

    Article  CAS  Google Scholar 

  42. Sorek Y, Zevin M, Reisfeld R, Hurvits T, Ruschin S. Zirconia and Zirconia−ORMOSIL planar waveguides prepared at room temperature. Chem Mater. 1997;9:670–6.

    Article  CAS  Google Scholar 

  43. Catauro M, Bollino F, Tranquillo E, Tuffi R, Dell’Era A, Vecchio CS. Morphological and thermal characterization of zirconia/hydroxyapatite composites prepared via sol-gel for biomedical applications. Ceram Int. 2019;45:2835–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ignazio Blanco is grateful to the University of Catania for supporting this research within the “Bando-CHANCE” and to the Department of Civil Engineering and Architecture within “Piano per la Ricerca 2016–2018–Linea Intervento 1 and 2.”

Author information

Authors and Affiliations

Authors

Contributions

All authors participated to the experimental work and discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Ignazio Blanco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catauro, M., Dal Poggetto, G., Cicala, G. et al. Thermo-oxidative investigation on SiO2 and SiO2–ZrO2 composites prepared by sol–gel route. J Therm Anal Calorim 147, 5401–5412 (2022). https://doi.org/10.1007/s10973-021-11139-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11139-w

Keywords

Navigation