Skip to main content
Log in

Effects of longitudinal vortex generator pairs in transverse microchambers on thermal–hydraulic performances and entropy generation in an interrupted microchannel heat sink

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel interrupted microchannel heat sink with longitudinal vortex generator (LVG) pairs in transverse microchambers is presented in this study. The effects of LVG pairs in transverse microchambers on thermal–hydraulic performances due to the Nusselt number and flow friction, as well as the entropy generation due to the heat transfer and flow irreversibility in microchannel are analyzed for Reynolds number of 133–596. The studied parameters of LVG pairs include height (H = 0.025–0.175 mm), transverse spacing (S = 0.01–0.07 mm) and setting angle (A = 30–75º). The results indicate that LVG pairs plays a significant effect on the thermal–hydraulic performance and entropy generation in microchannel as consequence of the perturbation generated by longitudinal vortexes in transverse microchambers. The greatest overall thermal performance factor of 1.45 and the lowest augmentation entropy generation number of 0.764 are both obtained by LVG pairs with H = 0.075 mm, S = 0.01 mm and A = 75º at Reynolds number of 596.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Setting angle of LVG pair (°)

A w :

Computational domain bottom area (m2)

A con :

Convective heat transfer area (m2)

c p :

Specific heat capacity (J kg−1 K−1)

Dh :

Hydraulic diameter (m)

f :

Friction factor h Heat transfer coefficient (W m−2 K−1)

H :

Height of LVG pair (m)

H ch :

Height of single microchannel (m)

k :

Thermal conductivity (W m−1 K−1)

L ch :

Length of single microchannel (m)

Nu:

Nusselt number

N s,a :

Augmentation entropy generation number

p :

Pressure (Pa)

q :

Heat flux (W m−2)

Re:

Reynolds number

S :

Transverse spacing of LVG pair (m)

\({S}_{\mathrm{gen}}^{*}\) :

Local total entropy generation (W m−3 K−1)

\(S_{{\text{gen}},\Delta T}^*\) :

Local heat transfer entropy generation (W m−3 K−1)

\(S_{{\text{gen}},\Delta P}^*\) :

Local flow entropy generation (W m−3 K−1)

S gen :

Global total entropy generation (W K−1)

\(S_{{\text{gen}},\Delta T}\) :

Global heat transfer entropy generation (W K−1)

\(S_{{\text{gen}},\Delta P}\) :

Global flow entropy generation (W K−1)

T :

Temperature (K)

u, v, w :

Velocity components (m s−1)

V :

Fluid volume (m3)

W ch :

Width of single microchannel (m)

x, y, z :

Cartesian coordinates (m)

ρ :

Density (kg m−3)

μ :

Dynamic viscosity (kg m−1 s−1)

ave:

Average

D:

Darcy

f:

Fluid

s:

Solid

in:

inlet

out:

Outlet

References

  1. Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981;2:126–9.

    Article  Google Scholar 

  2. Samal SK, MoharanaMK. Thermo-hydraulic and entropy generation analysis of recharging microchannel using water-based graphene–silver hybrid nanofluid. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09382-8.

  3. Topuz A, Engin T, Alper Özalp A, Erdogan B, Mert S, Yeter A. Experimental investigation of optimum thermal performance and pressure drop of water-based Al2O3, TiO2 and ZnO nanofluids flowing inside a circular microchannel. J Therm Anal Calorim. 2017;131(3):2843–63.

    Article  Google Scholar 

  4. Li F, Ma Q, Xin G, Zhang J, Wang X. Heat transfer and flow characteristics of microchannels with solid and porous ribs. Appl Therm Eng. 2020;178:115639.

  5. Feng Z, Ai X, Wu P, Lin Q, Huang Z. Experimental investigation of laminar flow and heat transfer characteristics in square minichannels with twisted tapes. Int J Heat Mass Transf. 2020;158:119947.

  6. Feng Z, Luo X, Guo F, Li H, Zhang J. Numerical investigation on laminar flow and heat transfer in rectangular microchannel heat sink with wire coil inserts. Appl Therm Eng. 2017;116:597–609.

    Article  Google Scholar 

  7. Naranjani B, Roohi E, Ebrahimi A. Thermal and hydraulic performance analysis of a heat sink with corrugated channels and nanofluids. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10225-9.

    Article  Google Scholar 

  8. Wang SL, Chen LY, Zhang BX, Yang YR, Wang XD. A new design of double-layered microchannel heat sinks with wavy microchannels and porous-ribs. J Therm Anal Calorim. 2020;141(1):547–58.

    Article  CAS  Google Scholar 

  9. Bazdar H, Toghraie D, Pourfattah F, Akbari OA, Nguyen HM, Asadi A. Numerical investigation of turbulent flow and heat transfer of nanofluid inside a wavy microchannel with different wavelengths. J Therm Anal Calorim. 2019;139(3):2365–80.

    Article  Google Scholar 

  10. Hou T, Chen Y. Pressure drop and heat transfer performance of microchannel heat exchanger with different reentrant cavities. Chem Eng Process-Process Intensif. 2020;153:107931.

  11. Akbari OA, Khodabandeh E, Kahbandeh F, Toghraie D, Khalili M. Numerical investigation of heat transfer of nanofluid flow through a microchannel with heat sinks and sinusoidal cavities by using novel nozzle structure. J Therm Anal Calorim. 2019;138(1):737–52.

    Article  CAS  Google Scholar 

  12. Zhu Q, Xia H, Chen J, Zhang X, Chang K, Zhang H, Wang H, Wan J, Jin Y. Fluid flow and heat transfer characteristics of microchannel heat sinks with different groove shapes. Int J Therm Sci. 2021;161:106721.

  13. Huang B, Li H, Xu T. Experimental Investigation of the Flow and Heat Transfer Characteristics in Microchannel Heat Exchangers with Reentrant Cavities. Micromachines, 2020; 11(4). https://doi.org/10.3390/mi11040403.

  14. Ebrahimi A, Naranjani B. An investigation on thermo-hydraulic performance of a flat-plate channel with pyramidal protrusions. Appl Therm Eng. 2016;106:316–24.

    Article  Google Scholar 

  15. Hosseinpour V, Kazemeini M, Rashidi A. Developing a metamodel based upon the DOE approach for investigating the overall performance of microchannel heat sinks utilizing a variety of internal fins. Int J Heat Mass Transf. 2020;149:119219.

  16. Wang G, Chen T, Tian M, Ding G. Fluid and heat transfer characteristics of microchannel heat sink with truncated rib on sidewall. Int J Heat Mass Transf. 2020;148:119142.

  17. Lan Y, Feng Z, Huang K, Zhang J, Hu Z. Effects of truncated and offset pin-fins on hydrothermal performance and entropy generation in a rectangular microchannel heat sink with variable fluid properties. Int Commun Heat Mass Transf. 2021;124:105258.

  18. Li Y, Wang Z, Yang J, Liu H. Thermal and hydraulic characteristics of microchannel heat sinks with cavities and fins based on field synergy and thermodynamic analysis. Appl Therm Eng. 2020;175:115348.

  19. Datta A, Sharma V, Sanyal D, Das P. A conjugate heat transfer analysis of performance for rectangular microchannel with trapezoidal cavities and ribs. Int J Therm Sci. 2019;138:425–46.

    Article  Google Scholar 

  20. Alfellag MA, Ahmed HE, Fadhil OT, Kherbeet ASh. Optimal hydrothermal design of microchannel heat sink using trapezoidal cavities and solid/slotted oval pins. Appl Therm Eng. 2019;158:113765.

  21. Chai L, Wang L. Thermal-hydraulic performance of interrupted microchannel heat sinks with different rib geometries in transverse microchambers. Int J Therm Sci. 2018;127:201–12.

    Article  Google Scholar 

  22. Wong KC, Lee JH. Investigation of thermal performance of microchannel heat sink with triangular ribs in the transverse microchambers. Int Commun Heat Mass Transf. 2015;65:103–10.

    Article  Google Scholar 

  23. Chai L, Xia G, Zhou M, Li J, Qi J. Optimum thermal design of interrupted microchannel heat sink with rectangular ribs in the transverse microchambers. Appl Therm Eng. 2013;51:880–9.

    Article  Google Scholar 

  24. Fiebig M, Kallweit P, Mitra N. Heat transfer enhancement and drag by longitudinal vortex generators in channel flow. Exp Therm Fluid Sci. 1991;4(1):103–14.

    Article  Google Scholar 

  25. Fiebig M, Valencia A, Mitra NK. Wing-type vortex generators for fin-and-tube heat-exchangers. Exp Therm Fluid Sci. 1993;7(4):287–95.

    Article  CAS  Google Scholar 

  26. Fiebig M. Embedded vortices in internal flow: heat transfer and pressure loss enhancement. Int J Heat Fluid Flow. 1995;16(5):376–88.

    Article  CAS  Google Scholar 

  27. Ebrahimi A, Roohi E, Kheradmand S. Numerical study of liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators. Appl Therm Eng. 2015;78:576–83.

    Article  Google Scholar 

  28. Ebrahimi A, Rikhtegar F, Sabaghan A, Roohi E. Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids. Energy. 2016;101:190–201.

    Article  CAS  Google Scholar 

  29. Ebrahimi A, Naranjani B, Milani S, Javan FD. Laminar convective heat transfer of shear-thinning liquids in rectangular channels with longitudinal vortex generators. Chem Eng Sci. 2017;173:264–74.

    Article  CAS  Google Scholar 

  30. Liu C, Teng JT, Chu JC, Chiu YL, Huang SY, Jin SP, Dang T, Greif R, Pan HH. Experimental investigations on liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators. Int J Heat Mass Transf. 2011;54:3069–80.

    Article  Google Scholar 

  31. Chen C, Teng JT, Cheng CH, Jin S, Huang S, Liu C, Lee MT, Pan HH, Greif R. A study on fluid flow and heat transfer in rectangular microchannels with various longitudinal vortex generators. Int J Heat Mass Transf. 2014;69:203–14.

    Article  Google Scholar 

  32. Wang Y, Zhou B, Liu Z, Tu Z, Liu W. Numerical study and performance analyses of the mini-channel with discrete double-inclined ribs. Int J Heat Mass Transf. 2014;78:498–505.

    Article  Google Scholar 

  33. Wang RJ, Wang JW, Li j, Zhu ZF. Parameterization investigation on the microchannel heat sink with slant rectangular ribs by numerical simulation. Appl Therm Eng. 2018;133:428–438.

  34. Liou TM, Wei TC, Wang CS. Investigation of nanofluids on heat transfer enhancement in a louvered microchannel with lattice Boltzmann method. J Therm Anal Calorim. 2018;135(1):751–62.

    Article  Google Scholar 

  35. Zhang JF, Jia L, Yang WW, Taler J, Oclon P. Numerical analysis and parametric optimization on flow and heat transfer of a microchannel with longitudinal vortex generators. Int J Therm Sci. 2019;141:211–21.

    Article  Google Scholar 

  36. Zhang JF, Joshi YK, Tao WQ. Single phase laminar flow and heat transfer characteristics of microgaps with longitudinal vortex generator array. Int J Heat Mass Transf. 2017;111:484–94.

    Article  Google Scholar 

  37. Datta A, Sanyal D, Das AK. Numerical investigation of heat transfer in microchannel using inclined longitudinal vortex generator. Appl Therm Eng. 2016;108:1008–19.

    Article  Google Scholar 

  38. Hemmat M, Hormozi F. A second law analysis for turbulent convective flow through panel type radiator equipped with vortex generators. J Therm Anal Calorim. 2020;143(3):2597–607.

    Article  Google Scholar 

  39. Rezazadeh R, Pourmahmoud N, Asaadi S. Numerical investigation and performance analyses of rectangular mini channel with different types of ribs and their arrangements. Int J Therm Sci. 2018;132:76–85.

    Article  Google Scholar 

  40. Amini Y, Akhavan S, Izadpanah E. A numerical investigation on the heat transfer characteristics of nanofluid flow in a three-dimensional microchannel with harmonic rotating vortex generators. J Therm Anal Calorim. 2019;139(1):755–64.

    Article  Google Scholar 

  41. Han Z, Xu Z, Qu H. Parametric study of the particulate fouling characteristics of vortex generators in a heat exchanger. Appl Therm Eng. 2020;167:114735.

  42. Ke Z, Chen CL, Li K, Wang S, Chen CH. Vortex dynamics and heat transfer of longitudinal vortex generators in a rectangular channel. Int J Heat Mass Transf. 2019;132:871–85.

    Article  Google Scholar 

  43. Esmaeilzadeh A, Amanifard N, Deylami HM. Comparison of simple and curved trapezoidal longitudinal vortex generators for optimum flow characteristics and heat transfer augmentation in a heat exchanger. Appl Therm Eng. 2017;125:1414–25.

    Article  Google Scholar 

  44. Bejan A. Entropy Generation Minimization. New York: CRC Press; 1996.

    Google Scholar 

  45. Ebrahimi A, Roohi E. Numerical study of flow patterns and heat transfer in mini twisted oval tubes. Int J Mod Phys C. 2015;26(12):1550140.

    Article  CAS  Google Scholar 

  46. Incropera F. Liquid Cooling of Electronic Devices by Single-Phase Convection. Wiley, 1996.

  47. Webb RL. Performance evolution criteria for use of enhanced heat exchanger surfaces in heat exchanger design. Int J Heat Mass Transf. 1981;24(4):715–26.

    Article  Google Scholar 

  48. Darbari B, Rashidi S, Keshmiri A. Nanofluid heat transfer and entropy generation inside a triangular duct equipped with delta winglet vortex generators. J Therm Anal Calorim. 2019;140(3):1045–55.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by National Natural Science Foundation of China (No. 22168003 and No. 21666005), and the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (No. 2019Z012).

Author information

Authors and Affiliations

Authors

Contributions

ZF contributed to writing—original draft, funding acquisition, conceptualization, methodology, supervision, validation, project administration, writing—review & editing. YL contributed to investigation, data curation, formal analysis, validation, writing—original draft, writing—review & editing. ZH contributed to writing—review & editing, investigation, visualization, validation. SZ contributed to writing—review & editing, visualization, validation. YZ contributed to funding acquisition, writing—review & editing. ZH contributed to project administration, writing—review & editing. JZ contributed to software, resources, writing—review & editing.

Corresponding author

Correspondence to Zhenfei Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Lan, Y., Hu, Z. et al. Effects of longitudinal vortex generator pairs in transverse microchambers on thermal–hydraulic performances and entropy generation in an interrupted microchannel heat sink. J Therm Anal Calorim 147, 8551–8567 (2022). https://doi.org/10.1007/s10973-021-11133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11133-2

Keywords

Navigation