Skip to main content

Advertisement

Log in

Cocrystals of betulin with adipic acid: preparation and thermal behavior

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The cocrystal of betulin (BE) with adipic acid (AA) was prepared using a liquid-assisted grinding method. The formation of BE-AA cocrystal was confirmed by powder X-ray diffraction, IR spectroscopy and thermal analysis methods. It was assumed that 1:1 BE-AA cocrystal hydrate was formed when liquid-assisted grinding was carried out using water-miscible liquids in which the solubility of adipic acid was higher than in others. The cocrystal hydrate was stable under room temperature and rather high relative humidity. Nevertheless, the betulin–adipic acid cocrystal was found to decompose under heating after the loss of water molecules, followed by phase transformation. An anhydrous BE-AA cocrystal was also prepared by the BE-AA physical mixture heating up to the point of adipic acid melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hayek EWH, Jordis U, Moche W, Sauter F. A bicentennial of betulin. Phytochem. 1989;28:2229–42.

    Article  CAS  Google Scholar 

  2. Islam MT, Sarkar C, El-Kersh DM, Jamaddar S, Uddin SJ, Shilpi JA, Mubarak MS. Natural products and their derivatives against coronavirus: a review of the non-clinical and pre-clinical data. Phytotherapy Res. 2020;34:2471–92. https://doi.org/10.1002/ptr.6700.

    Article  CAS  Google Scholar 

  3. Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, Aghanoori M-R, Machaj F, Ghamsari M, Rosik J, Hudecki A, Afkhami A, Hashemi M, Los MJ, Mokarram P, Madrakian T, Ghavami S. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv. 2020;38: 107409. https://doi.org/10.1016/j.biotechadv.2019.06.008.

    Article  CAS  PubMed  Google Scholar 

  4. Xiao S, Tian Z, Wang Y, Si L, Zhang L, Zhou D. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives. Med Res Rev. 2018;38:951–76.

    Article  Google Scholar 

  5. Król SK, Kiełbus M, Rivero-Müller A, Stepulak A. Comprehensive review on betulin as a potent anticancer agent. BioMed Res Intern. 2015;2015:1–11.

    Article  Google Scholar 

  6. Mierina I, Vilskersts R, Turks M. Delivery systems for birch-bark triterpenoids and their derivatives in anticancer research. Curr Med Chem. 2018;25:1–29.

    Article  Google Scholar 

  7. Saneja A, Arora D, Kumar R, Dubey RD, Panda AK, Gupta PN. Therapeutic applications of betulinic acid nanoformulations. Ann NY Acad Sci. 2018;1421:5–18. https://doi.org/10.1111/nyas.13570.

    Article  CAS  PubMed  Google Scholar 

  8. Jones W, Motherwell WDS, Trask AV. Pharmaceutical cocrystals: an emerging approach to physical property enhancement. MRS Bull. 2006;31:875–9.

    Article  CAS  Google Scholar 

  9. Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int J Pharm. 2011;419:1–11.

    Article  CAS  Google Scholar 

  10. Healy AM, Worku ZA, Kumar D, Madi AM. Pharmaceutical solvates, hydrates and amorphous forms: a special emphasis on cocrystals. Adv Drug Deliv Rev. 2017;117:25–46.

    Article  CAS  Google Scholar 

  11. Braga D, Maini L, Grepioni F. Mechanochemical preparation of co-crystals. Chem Soc Rev. 2013;42:638–764.

    Article  Google Scholar 

  12. Hasa D, Jones W. Screening for new pharmaceutical solid forms using mechanochemistry: a practical guide. Adv Drug Deliv Rev. 2017;117:147–61.

    Article  CAS  Google Scholar 

  13. Rodrigues M, Baptista B, Lopes JA, Sarraguça MC. Pharmaceutical cocrystallization techniques. Advances challenges. Int J Pharm. 2018;547:404–20.

    Article  CAS  Google Scholar 

  14. Mikhailenko MA, Shakhtshneider TP, Brezgunova ME, Drebushchak VA, Kuznetsova SA, Boldyrev VV. Obtaining and studying the physical and chemical properties of betulin solvates. Khimija Rastitel’nogo Syr’ja. 2010;2:63–70.

    Google Scholar 

  15. Drebushchak TN, Mikhailenko MA, Brezgunova ME, Shakhtshneider TP, Kuznetsova SA. Crystal structure of betulin ethanol solvate. J Struct Chem. 2010;51:798–801.

    Article  CAS  Google Scholar 

  16. Boryczka S, Michalik E, Jastrzebska M, Kusz J, Zubko M, Bebenek E. X-ray crystal structure of betulin-DMSO solvate. J Chem Crystallogr. 2012;42:345–51.

    Article  CAS  Google Scholar 

  17. Yang D, Gong N, Zhang L, Lu Y. Isostructurality among 5 solvatomorphs of betulin: X-Ray structure and characterization. J Pharm Sci. 2016;105:1867–73.

    Article  CAS  Google Scholar 

  18. Yang D, Gong N, Zhang L, Lu Y, Du G. Structural and computational study of four new solvatomorphs of betulin: a combined X-ray, Hirshfeld surface, and thermal analysis. J Pharm Sci. 2017;106:826–34.

    Article  CAS  Google Scholar 

  19. Myz SA, Mikhailovskaya AV, Mikhailenko MA, Bulina NV, Kuznetsova SA, Shakhtshneider TP. New crystalline betulin-based materials: improving betulin solubility via cocrystal formation. Mater Today: Proceed. 2019;12:82–5.

    CAS  Google Scholar 

  20. Kuznetsova SA, Kuznetsov BN, Mikhailov AG, Levdanskii VA. Method of production of betulin using shock-acoustic impulses with alkali hydrolysis and extraction of wood-processing waste products. Chem Abstr. 2004;2004:1231201.

    Google Scholar 

  21. Drebushchak TN, Mikhailovskaya AV, Drebushchak VA, Mikhailenko MA, Myz SA, Shakhtshneider TP, Kuznetsova SA. Crystal forms of betulin. Polymorphism or pseudopolymorphism? J Struct Chem. 2020;61:1260–6. https://doi.org/10.1134/S0022476620080119.

    Article  CAS  Google Scholar 

  22. Friščić T, Jones W. Recent advances in understanding the mechanism of cocrystal formation via grinding. Cryst Growth Des. 2009;9:1621–37.

    Article  Google Scholar 

  23. Do J-L, Friščić T. Mechanochemistry: a force of synthesis. ACS Cent Sci. 2017;3:13–9.

    Article  CAS  Google Scholar 

  24. Myz SA, Shakhtshneider TP, Tumanov NA, Boldyreva EV. Preparation and studies of the co-crystals of meloxicam with carboxylic acids. Russ Chem Bull. 2012;61:1798–809.

    Article  CAS  Google Scholar 

  25. Gaivoronskii AN, Granzhan VA. Solubility of adipic acid in organic solvents and water. Russ J Appl Chem. 2005;78:404–8.

    Article  CAS  Google Scholar 

  26. Bruni G, Monteforte F, Maggi L, Friuli V, Ferrara C, Mustarelli P, Girella A, Berbenni V, Capsoni D, Milanese C, Marini A. Probenecid and benzamide: cocrystal prepared by a green method and its physico-chemical and pharmaceutical characterization. J Therm Anal Calorim. 2020;140:1859–69. https://doi.org/10.1007/s10973-019-09197-2.

    Article  CAS  Google Scholar 

  27. de Almeida AC, Ferreira PO, Torquetti C, Ekawa B, Carvalho ACS, dos Santos EC, Junior Caires F. Mechanochemical synthesis, characterization and thermal study of new cocrystals of ciprofloxacin with pyrazinoic acid and p-aminobenzoic acid. J Therm Anal Calorim. 2020;140:2293–303. https://doi.org/10.1007/s10973-019-08958-3.

    Article  CAS  Google Scholar 

  28. Drebushchak VA, Mikhailenko MA, Shakhtshneider TP, Kuznetsiva SA. Melting of orthorhombic betulin. J Therm Anal Calorim. 2013;111:2005–8.

    Article  CAS  Google Scholar 

  29. Wright SF, Dollimore D, Dunn JG, Alexander K. Determination of the vapor pressure curves of adipic acid and triethanolamine using thermogravimetric analysis. Thermochim Acta. 2004;42:125–30.

    Google Scholar 

  30. Gal S, Meisel T, Erdey L. On the thermal analysis of aliphatic carboxylic acids and their salts. J Therm Anal. 1969;1:159–70.

    Article  CAS  Google Scholar 

  31. Morris R, Rodriguez-Hornedo N. Hydrates. In: Swarbrick J, Boylan J, editors. Encyclopedia of pharmaceutical technology. New York: Marcel Dekker Inc.; 1993. p. 393–440.

    Google Scholar 

  32. Clarke HD, Arora KK, Bass H, Kavuru P, Ong TT, Pujari T, Wojtas L, Zaworotko MJ. Structure−stability relationships in cocrystal hydrates: does the promiscuity of water make crystalline hydrates the Nemesis of crystal engineering? Cryst Growth Des. 2010;10:2152–67.

    Article  CAS  Google Scholar 

  33. Shevchenko A, Miroshnyk I, Pietilä L-O, Haarala J, Salmia J, Sinervo K, Mirza S, van Veen B, Kolehmainen E, Yliruusi J. Diversity in itraconazole cocrystals with aliphatic dicarboxylic acids of varying chain length. Cryst Growth Des. 2013;13:4877–84.

    Article  CAS  Google Scholar 

  34. Eddleston MD, Lloyd GO, Jones W. Cocrystal dissociation and molecular demixing in the solid state. Chem Commun. 2012;48:8075–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was carried out within the State Assignments to ISSCM SB RAS (project No. FWUS-2021-0009) and ICCT SB RAS (Project No. 0287-2021-0017). The authors are grateful to E. Losev for recording the FTIR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Shakhtshneider.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 400 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myz, S.A., Mikhailenko, M.A., Mikhailovskaya, A.V. et al. Cocrystals of betulin with adipic acid: preparation and thermal behavior. J Therm Anal Calorim 147, 8235–8242 (2022). https://doi.org/10.1007/s10973-021-11107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11107-4

Keywords

Navigation