Skip to main content
Log in

Fabrication and Thermal properties of graphene nanoplatelet-enhanced phase change materials based on paraffin encapsulated by melamine–formaldehyde

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, a series of phase change nanocomposites using microencapsulated phase change material and graphene nanoplatelet (as an additive material) is synthesized to enhance PCM thermal properties. Paraffin as a PCM is encapsulated by melamine–formaldehyde as a shell material via in situ polymerization method. Graphene nanoplatelet as a heat transfer promoter is added among the microencapsulated phase change materials (MPCMs) in different mass fractions to form phase change nanocomposites. By the applied technique, the defect of leakage and the low thermal conductivity of the phase change material can be overcome simultaneously. The experimental measurements show that the thermal conductivity of the PCNs effectively enhances without a significant influence on their phase change enthalpy. The results indicate that when the amount of the graphene nanoplatelets increases, the thermal diffusivity and thermal conductivity enhance. By using 10 mass % graphene nanoplatelets in the PCN, the PCN's thermal diffusivity and thermal conductivity are raised by 93% and 48%, respectively. The DSC results show that the maximum latent heat of the PCNs is 95.97 J g−1 (PCN with 1 mass % of graphene). However, the maximum difference in the latent heat of PCNs with different graphene percentages is less than 4%. Thermal stability experiments show that the PCNs have a stable structure up to 165 °C without damaging the microcapsule shell. The fabricated PCNs, compared to many previous works, have good thermal properties and low cost which can properly be considered in thermal energy storage and thermal management applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data and material availability

All data and materials support the published claims and comply with field standards.

References

  1. Liu Q, Jiang L, Zhao Y, Yi Wang Y, Lei J. Preparation and characterization of a novel form-stable phase change material for thermal energy storage. J Therm Anal Calorim. 2021;143:2945–52.

    Article  CAS  Google Scholar 

  2. Soares N, Costa JJ, Gaspar AR, Santos P. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy build. 2013;59:82–103.

    Article  Google Scholar 

  3. Zou D, Liu X, He R, Zhu S, Bao J, Guo J, Hu Z, Wang B. Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module. Energy Convers Manage. 2019;180:1196–202.

    Article  CAS  Google Scholar 

  4. Alva G, Lin Y, Liu L, Fang G. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: a review. Energy Build. 2017;144:276–94.

    Article  Google Scholar 

  5. Heydarian R, Shafii MB, Shirin-Abadi AR, Ghasempour R, Nazari MA. Experimental investigation of paraffin nano-encapsulated phase change material on heat transfer enhancement of pulsating heat pipe. J Therm Anal Calorim. 2019;137:1603–13.

    Article  CAS  Google Scholar 

  6. Shili H, Fahem K, Harmand S, Jabrallah SB. Thermal control of electronic components using a liquid around the phase change material. J Therm Anal Calorim. 2020;140:1177–89.

    Article  CAS  Google Scholar 

  7. Lorwanishpaisarn N, Kasemsiri P, Posi P, Chindaprasirt P. Characterization of paraffin/ultrasonic-treated diatomite for use as phase change material in thermal energy storage of buildings. J Therm Anal Calorim. 2017;128(3):1293–303.

    Article  CAS  Google Scholar 

  8. Suttaphakdee P, Pongsa UR, Kasemsiri P, Posi P, Lorwanishpaisarn N, Tasai AN, Dulsang NA, Chindaprasirt P. Thermal energy storage properties of form-stable paraffin/recycle block concrete composite phase change material. J Eng Sci Technol. 2017;12(1):256–64.

    Google Scholar 

  9. Beemkumar N, Yuvarajan D, Arulprakasajothi M, Elangovan K, Arunkumar T. Control of room temperature fluctuations in the building by incorporating PCM in the roof. J Therm Anal Calorim. 2021;143(4):3039–46.

    Article  CAS  Google Scholar 

  10. Suttaphakdee P, Dulsang N, Lorwanishpaisarn N, Kasemsiri P, Posi P, Chindaprasirt P. Optimizing mix proportion and properties of lightweight concrete incorporated phase change material paraffin/recycled concrete block composite. Constr Build Mater. 2016;127:475–83.

    Article  CAS  Google Scholar 

  11. Rostami Z, Heidari N, Rahimi M, Azimi N. Enhancing the thermal performance of a photovoltaic panel using nano-graphite/paraffin composite as phase change material. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10726-1.

    Article  Google Scholar 

  12. Dao TD, Jeong HM. Novel stearic acid/graphene core–shell composite microcapsule as a phase change material exhibiting high shape stability and performance. Sol Energy Mater Sol Cells. 2015;137:227–34.

    Article  CAS  Google Scholar 

  13. Mert MS, Mert HH, Sert M. Microencapsulated oleic–capric acid/hexadecane mixture as phase change material for thermal energy storage. J Therm Anal Calorim. 2019;136:1551–61.

    Article  CAS  Google Scholar 

  14. Khodadadi J, Fan L, Babaei H. Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev. 2013;24:418–44.

    Article  CAS  Google Scholar 

  15. Ji H, Sellan DP, Pettes MT, Kong X, Ji J, Shi L, Ruoff RS. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ Sci. 2014;7:1185–92.

    Article  CAS  Google Scholar 

  16. Ismail K, Alves C, Modesto M. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Appl Therm Eng. 2001;21:53–77.

    Article  CAS  Google Scholar 

  17. Sciacovelli A, Gagliardi F, Verda V. Maximization of performance of a PCM latent heat storage system with innovative fins. Appl Energy. 2015;137:707–15.

    Article  Google Scholar 

  18. Sedeh MM, Khodadadi J. Thermal conductivity improvement of phase change materials/graphite foam composites. Carbon. 2013;60:117–28.

    Article  CAS  Google Scholar 

  19. Ren Q, Meng F, Guo P. A comparative study of PCM melting process in a heat pipe-assisted LHTES unit enhanced with nanoparticles and metal foams by immersed boundary-lattice Boltzmann method at pore-scale. Int J Heat Mass Transfer. 2018;121:1214–28.

    Article  Google Scholar 

  20. Huang X, Lin Y, Alva G, Fang G. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Sol Energy Mater Sol Cells. 2017;170:68–76.

    Article  CAS  Google Scholar 

  21. Song S, Qiu F, Zhu W, Guo Y, Zhang Y, Ju Y, Feng R, Liu Y, Chen Z, Zhou J. Polyethylene glycol/halloysite@ Ag nanocomposite PCM for thermal energy storage: simultaneously high latent heat and enhanced thermal conductivity. Sol Energy Mater Sol Cells. 2019;193:237–45.

    Article  CAS  Google Scholar 

  22. Wang T, Wang S, Geng L, Fang Y. Enhancement on thermal properties of paraffin/calcium carbonate phase change microcapsules with carbon network. Appl Energy. 2016;179:601–8.

    Article  CAS  Google Scholar 

  23. Zeng JL, Cao Z, Yang DW, Sun LX, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim. 2010;101:385–9.

    Article  CAS  Google Scholar 

  24. Karami B, Azimi N, Ahmadi S. Increasing the electrical efficiency and thermal management of a photovoltaic module using expanded graphite (EG)/paraffin-beef tallow-coconut oil composite as phase change material. Renew Energy. 2021;178:25–49.

    Article  CAS  Google Scholar 

  25. Siahkamari L, Rahimi M, Azimi N, Banibayat M. Experimental investigation on using a novel phase change material (PCM) in micro structure photovoltaic cooling system. Int Commun Heat Mass. 2019;100:60–6.

    Article  CAS  Google Scholar 

  26. Wu S, Yan T, Kuai Z, Pan W. Thermal conductivity enhancement on phase change materials for thermal energy storage: a review. Energy Storage Mater. 2020;25:251–95.

    Article  Google Scholar 

  27. Liu H, Wang X, Wu D. Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: a review. Sustain Energ Fuels. 2019;3(5):1091–149.

    Article  CAS  Google Scholar 

  28. Nomura T, Tabuchi K, Zhu C, Sheng N, Wang S, Akiyama T. High thermal conductivity phase change composite with percolating carbon fiber network. Appl energy. 2015;154:678–85.

    Article  CAS  Google Scholar 

  29. Liu C, Rao Z, Li Y. Composites enhance heat transfer in paraffin/melamine resin microencapsulated phase change materials. Energy Technol. 2016;4:496–501.

    Article  CAS  Google Scholar 

  30. Liu Z, Chen Z, Yu F. Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler. Sol Energy Mater Sol Cells. 2019;192:72–80.

    Article  CAS  Google Scholar 

  31. Wang T, Wang S, Wu W. Experimental study on effective thermal conductivity of microcapsules based phase change composites. Int J Heat Mass Transfer. 2017;109:930–7.

    Article  CAS  Google Scholar 

  32. Qu Y, Wang S, Zhou D, Tian Y. Experimental study on thermal conductivity of paraffin-based shape-stabilized phase change material with hybrid carbon nano-additives. Renew Energy. 2020;146:2637–45.

    Article  CAS  Google Scholar 

  33. Yang Y, Kuang J, Wang H, Song G, Liu Y, Tang G. Enhancement in thermal property of phase change microcapsules with modified silicon nitride for solar energy. Sol Energy Mater Sol Cells. 2016;151:89–95.

    Article  CAS  Google Scholar 

  34. Sun Z, Fan R, Yan F, Zhou T, Zheng N. Thermal management of the lithium-ion battery by the composite PCM-Fin structures. Int J Heat Mass Transfer. 2019;145:118739.

    Article  Google Scholar 

  35. Jiang Z, Yang W, He F, Xie C, Fan J, Wu J, Zhang K. Microencapsulated paraffin phase-change material with calcium carbonate shell for thermal energy storage and solar-thermal conversion. Langmuir. 2018;34:14254–64.

    Article  CAS  PubMed  Google Scholar 

  36. Feczkó T, Trif L, Horák D. Latent heat storage by silica-coated polymer beads containing organic phase change materials. Sol Energy. 2016;132:405–14.

    Article  CAS  Google Scholar 

  37. Zhang H, Wang X. Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine–formaldehyde shell. Colloids Surf A Physicochem Eng Asp. 2009;332:129–38.

    Article  CAS  Google Scholar 

  38. Su JF, Wang SB, Zhang YY, Huang Z. Physicochemical properties and mechanical characters of methanol-modified melamine-formaldehyde (MMF) shell microPCMs containing paraffin. Colloid Polym Sci. 2011;289:111–9.

    Article  CAS  Google Scholar 

  39. Falahi E, Barmar M, Haghighat KM. Preparation of phase-change material microcapsules with paraffin or camel fat cores: application to fabrics. Iran Polym J. 2010;19:277–86.

    Google Scholar 

  40. Qiao Z, Mao J. Multifunctional poly (melamine-urea-formaldehyde)/graphene microcapsules with low infrared emissivity and high thermal conductivity. Mater Sci Eng B. 2017;226:86–93.

    Article  CAS  Google Scholar 

  41. Liu R, Wang L. Stochastically driven vibrations of single-layered graphene sheets. Sci China: Phys Mech Astron. 2012;55:1103–10.

    Google Scholar 

  42. Goli P, Legedza S, Dhar A, Salgado R, Renteria J, Balandin AA. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J Power Sources. 2014;248:37–43.

    Article  CAS  Google Scholar 

  43. Zou D, Ma X, Liu X, Zheng P, Hu Y. Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery. Int J Heat Mass Transfer. 2018;120:33–41.

    Article  CAS  Google Scholar 

  44. Mohammadi M, Yousefi AA, Ehsani M. Study of the thermal and mechanical properties of blown films of high-and low-density polyethylene blends. J Appl Polym Sci. 2012;125(1):755–67.

    Article  CAS  Google Scholar 

  45. Liu J, Chen L, Fang X, Zhang Z. Preparation of graphite nanoparticles-modified phase change microcapsules and their dispersed slurry for direct absorption solar collectors. Sol Energy Mater Sol Cells. 2017;159:159–66.

    Article  CAS  Google Scholar 

  46. Zhan S, Chen S, Chen L, Hou W. Preparation and characterization of polyurea microencapsulated phase change material by interfacial polycondensation method. Powder Technol. 2016;292:217–22.

    Article  CAS  Google Scholar 

  47. Do T, Ko YG, Chun Y, Choi US. Encapsulation of phase change material with water-absorbable shell for thermal energy storage. ACS Sustain Chem Eng. 2015;3(11):2874–81.

    Article  CAS  Google Scholar 

  48. Sarı A, Alkan C, Döğüşcü DK, Biçer A. Micro/nano-encapsulated n-heptadecane with polystyrene shell for latent heat thermal energy storage. Sol Energy Mater Sol Cells. 2014;126:42–50.

    Article  CAS  Google Scholar 

  49. Sarı A, Alkan C, Altıntaş A. Preparation, characterization and latent heat thermal energy storage properties of micro-nanoencapsulated fatty acids by polystyrene shell. Appl Therm Eng. 2014;73(1):1160–8.

    Article  CAS  Google Scholar 

  50. Jiang X, Luo R, Peng F, Fang Y, Akiyama T, Wang S. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Appl Energy. 2015;137:731–7.

    Article  CAS  Google Scholar 

  51. Su JF, Wang XY, Wang SB, Zhao YH, Huang Z. Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage. Energy Convers Manag. 2012;55:101–7.

    Article  CAS  Google Scholar 

  52. Chen Z, Wang J, Yu F, Zhang Z, Gao X. Preparation and properties of graphene oxide-modified poly (melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. J Mater Chem A. 2015;3(21):11624–30.

    Article  CAS  Google Scholar 

  53. Liu Z, Chen Z, Yu F. Microencapsulated phase change material modified by graphene oxide with different degrees of oxidation for solar energy storage. Sol Energy Mater Sol Cells. 2018;174:453–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Valuable discussions with Rezaee Shirin-Abadi (Associate professor at the Department of Polymer Chemistry and Materials, Shahid Beheshti University), and Ahmad Reza Bahramian (Associate Professor at the Faculty of Chemical Engineering, Tarbiat Modares University) are kindly acknowledged.

Funding

The authors declare they have no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Sahebi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Consent for publication

All authors have consented to publish the study as an article in the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khezri, A., Sahebi, M. & Mohammadi, M. Fabrication and Thermal properties of graphene nanoplatelet-enhanced phase change materials based on paraffin encapsulated by melamine–formaldehyde. J Therm Anal Calorim 147, 7683–7691 (2022). https://doi.org/10.1007/s10973-021-11085-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11085-7

Keywords

Navigation