Skip to main content
Log in

Disclosing the complex crystallization of PBAT/PLA/Babassu biocompounds through MDSC analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Biocompounds based on poly(butylene adipate‐co‐terephthalate) (PBAT) and polylactic acid (PLA) were produced at 50:50 with 1% and 5% of Babassu. Modulated differential scanning calorimetry was employed to elucidate their complex melt and cold crystallizations and recrystallization. Heat flow signals under applied amplitudes/frequencies did not significantly change; hence, 1 K/60 s was selected to perform the crystallization tests. From the non-reversing heat flow signal, higher cooling/heating rates led to higher crystallization rates, and under higher heating rates much PLA’s polymorphic crystalline phase is produced. PLA’s recrystallization which occurs within its melting increased with Babassu addition. Dynamic mechanical analysis and scanning electron microscopy indicated absence of Babassu aggregates resulted from the proper processing, adding PBAT to PLA improved the energy dissipation mechanisms as translated through higher stress support; related to Babassu adding 1% to PBAT/PLA the stress was improved and it acted as toughening agent. PBAT/PLA/Babassu besides environmentally safe are industrially advantageous once provide options for application such as food packing and general products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

Notes

  1. The methodology applied during analysis and data treatment of MDSC signals is provided in the Supplementary Material.

  2. Scans acquired in higher rates are included in Supplementary Material.

References

  1. Li X, Ai X, Pan H, Yang J, Gao G, Huiliang Z, Yang H, Dong L. The morphological, mechanical, rheological, and termal properties of PLA/PBAT blown films with chain extender. Polym Adv Technol. 2018;29:1706–17.

    Article  CAS  Google Scholar 

  2. Teamsinsungvon, A. Physical properties of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends and their composites. MasterDissertation. Suranaree University of Technology; 2011.

  3. Yeh J, Tsou C, Huang C, Chen K, Wu C, Chai W. Compatible and Crystallization Properties of Poly(lactic acid)/Poly(butylene adipate-co-terephthalate) Blends. J Appl Polym Sci. 2010;116:680–7.

    CAS  Google Scholar 

  4. Pluta M, Galeski A. Crystalline and supermolecular structure of polylactide in relation to the crystallization method. J Appl Polym Sci. 2002;86:1386–95.

    Article  CAS  Google Scholar 

  5. Rashkov I, Manolova N, Li SM, Espartero JL, Vert M. Synthesis, Characterization, and Hydrolytic Degradation of PLA/PEO/PLA Triblock Copolymers with Short Poly(l-lactic acid) Chains. Macromolecules. 1996;29:50–6.

    Article  CAS  Google Scholar 

  6. Bastioli, C. In: Handbook of biodegradable polymers. Shawbury, Shrewsbury, Shropshire, U.K.: Rapra Technology. 2005.

  7. Choi NS, Kim CH, Cho KY, Park JK. Morphology and hydrolysis of PCL/PLLA blends compatibilized with P(LLA-co-ϵCL) or P(LLA-b-ϵCL). J Appl Polym Sci. 2002;86:1892–8.

    Article  CAS  Google Scholar 

  8. Na YH, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y. Compatibilization Effect of Poly(ε-caprolactone)-b-poly(ethylene glycol) Block Copolymers and Phase Morphology Analysis in Immiscible Poly(lactide)/Poly(ε-caprolactone) Blends. Biomacromol. 2002;3:1179–86.

    Article  CAS  Google Scholar 

  9. Almeida TG, Neto JES, Costa ARM, da Silva AS, Carvalho LH, Canedo EL. Degradation during processing in poly(butylene adipate-co-terephthalate)/vegetable fiber compounds estimated by torque rheometry. Polym Test. 2016;55:204–11.

    Article  CAS  Google Scholar 

  10. França DC, Almeida TG, Abels G, Canedo EL, Carvalho LH, Wellen RMR, Haag K, Koschek K. Tailoring PBAT/PLA/Babassu films for suitability of agriculture mulch application. J Nat Fibers. 2018;1:1–11.

    Google Scholar 

  11. Schäfer, H., Reul, L. T. A., Souza, F. M., Wellen, R. M. R., Carvalho, L. H., Koschek, K., Canedo, E. L. J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-020-09433-0.

  12. Wellen RMR, Rabello MS, Araujo Júnior IC, Fechine GJM, Canedo EL. Melting and crystallization of poly(3-hydroxybutyrate): Effect of heating/cooling rates on phase transformation. Polímeros 2015;25:296–304.

    Article  CAS  Google Scholar 

  13. Koyama N, Doi Y. Miscibility of binary blends of poly[(R)-3-hydroxybutyric acid] and poly[(S)-lactic acid]. Polymer. 1997;38:1589–93.

    Article  CAS  Google Scholar 

  14. Solarski S, Ferreira M, Devaux E. Characterization of the thermal properties of PLA fibers by modulated differential scanning calorimetry. Polymer. 2005;46:11187–92.

    Article  CAS  Google Scholar 

  15. Reading M, Hourston DJ. In: Modulated Temperature Differential Scanning Calorimetry. Springer; 2006.

    Book  Google Scholar 

  16. Zhang J, Tashiro K, Domb AJ, Tsuji H. Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(L-lactide) Investigated by Simultaneous Measurements of WAXD and DSC. Macromol Symp. 2006;242:274.

    Article  CAS  Google Scholar 

  17. Gao J, Yu M, Li Z. Noinsothermal crystallization kinetics and melting behavior of bimodal medium density polyethylene/low density polyethylene blends. Eur Polym J. 2004;44:1533–9.

    Article  Google Scholar 

  18. Li S, Sun X, Li H, Yan S. The crystallization behavior of biodegradable polymer in thin film. Eur Polymer J. 2018;102:238–53.

    Article  CAS  Google Scholar 

  19. Li C, Tian G. Zhang, Yong; Zhang, Yinxi – Crystallization behavior of polypropylene/polycarbonate blends. Poly Test. 2002;21:919–26.

    Article  CAS  Google Scholar 

  20. Pingping, Z.; Dezhu, M. Study on the double cold crystallization peaks of poly (ethylene terephthalate) - 3. The influence of the addition of calcium carbonate (CaCo3). Eur Polym J. 2000; 36: 2471–2475.

  21. Thomas, L. C. – Modulated DSC Paper #3 Modulated DSC Basics; Optimization of MDSC Experimental Conditions. TA Instruments, 109 Lukens Drive, New Castle, DE 19720, USA.

  22. Beber VC, Barros S, Banea MD, Brede M, Carvalho LH, Hoffmann R, Costa ARM, Bezerra EB, Silva IDS, Haag K, Koschek K, Wellen RMR. Effect of Babassu Natural Filler on PBAT/PHB Biodegradable Blends. Materials. 2018;11:820–35.

    Article  Google Scholar 

  23. Utracki LA, Wilkie CA. In: Polymer Blends Handbook. Dordrecht, The Netherlands: Springer; 2014.

    Google Scholar 

  24. Kawai, T., Rahman, N., Matsuba, G., Nishida, k., Kanaya, T., Nakano, M., Okamoto, H., Kawada, J., Usuki, A., Honma, N., Nakajima, K., Matsuda, M.. Crystallization and Melting Behavior of Poly (L-lactic Acid). Macromolecules 2007; 40: 9463–9469

  25. Pan P, Kai W, Zhu B, Dong T, Inoue Y. Polymorphous crystallization and multiple melting behavior of poly(l-lactide): molecular weight dependence. Macromolecules. 2007;40:6898–905.

    Article  CAS  Google Scholar 

  26. Aziz AA, Hay JN, Jenkins MJ. The melting of poly (l-lactic acid). Eur Polymer J. 2018;100:253–7.

    Article  CAS  Google Scholar 

  27. Aliotta L, Cinelli P, Coltelli MB, Righetti MC, Gazzano M, Lazzeri A. Effect of nucleating agents on crystallinity and properties of poly (lactic acid) (PLA). Eur Polymer J. 2017;93:822–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the fellowships of Prof Laura Carvalho, Prof Edcleide Araújo and Prof Renate Wellen; the financial support from Deutscher Akademischer Austauschdienst (DAAD) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) within the PROBRAL project PPP Brasilien (Projektbezogener Personenaustausch Brasilien). We are deeply grateful to Katja Marnitz at Fraunhofer IFAM for her technical support with the MDSC experiments.

Author information

Authors and Affiliations

Authors

Contributions

Renate M. R. Wellen: writing, supervising; Nichollas G. Jaques: writing, plotting; Ana B. S. Barros: writing, plotting; Dayanne D. S. Morais: writing, extrusion; Débora E. O. Almeida: writing, plotting; Edcleide M. Araújo: writing, methodology; Katharina Haag: writing, supervising; Laura H. Carvalho: writing, methodology; Katharina Koschek: writing, supervising.

Corresponding author

Correspondence to Renate M. R. Wellen.

Ethics declarations

Conflict of interest

There is no conflict of interest and all authors have agreed with this submission and they are aware of the content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 607 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wellen, R.M.R., Jaques, N.G., Barros, A.B.S. et al. Disclosing the complex crystallization of PBAT/PLA/Babassu biocompounds through MDSC analysis. J Therm Anal Calorim 147, 7299–7310 (2022). https://doi.org/10.1007/s10973-021-11058-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11058-w

Keywords

Navigation