Skip to main content
Log in

Comparative thermostability of whey protein and alginate hydrospheres complexed with divalent cations

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

A Correction to this article was published on 27 October 2021

This article has been updated

Abstract

Water retention and thermostability of powders and films of whey protein isolate (WPIp, dWPIf), sodium alginate (NaALGp, NaALGf), and their dry hydrospheres were evaluated by thermogravimetric analysis to demonstrate the importance of the gelling cation, for the first time in the case of the protein, and some potential applications. WPIp retained less water (7.1%) than ALGp (20.4%) due to the greater hydrophilicity of the polysaccharide. The difference was smaller for the films (12.3% and 18.8%, respectively) due to the incorporation of water during protein denaturation. Dried ALG beads retained less water than the film and the water content was dependent on the crosslinking cation (CaALGs > ZnALGs > CdALG). Protein films and spheres exhibited water retention very similar to CaALGs. The degradation of ZnALGs (smallest radius cation used and monodentate coordination) began at the lowest temperature (168 °C) and exhibited the highest mass loss as compared to CaALGs (171 °C) or CdALGs (176 °C, both with bidentate coordination). For the protein, Zn2+ also exhibited the lowest degradation peak temperature. Pyrolisis of powders, films and spheres demonstrate that the protein is more stable than the polyssacharide. Therefore, it can act as a better flame retardant agent than alginate. On the other hand, only alginate spheres were suitable for the production of activated carbon (190.0 m2 g−1) and the recovery of metal oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Chandel AK, Garlapati VK, Singh AK, Antunes FAF, Silva SS. The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol. 2018;264:370–81. https://doi.org/10.1016/j.biortech.2018.06.004.

    Article  CAS  PubMed  Google Scholar 

  2. Alavi F, Emam-Djomeh Z, Yarmand MS, Salami M, Momen S, Moosavi-Movahedi AA. Cold gelation of curcumin loaded whey protein aggregates mixed with k-carrageenan: impact of gel microstructure on the gastrointestinal fate of curcumin. Food Hydrocoll. 2018;85:267–80. https://doi.org/10.1016/j.foodhyd.2018.07.012.

    Article  CAS  Google Scholar 

  3. Zhang J, Ji Q, Wang F, Tan L, Xia Y. Effects of divalent metal ions on the flame retardancy and pyrolysis products of alginate fibres. Polym Degrad Stabil. 2012;97:1034–40. https://doi.org/10.1016/j.polymdegradstab.2012.03.004.

    Article  CAS  Google Scholar 

  4. Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, Kamal MR, Lacroix M. Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym. 2012;90:1757–63. https://doi.org/10.1016/j.carbpol.2012.07.065.

    Article  CAS  PubMed  Google Scholar 

  5. DeCicco JM. Methodological issues regarding biofuels and carbon uptake. Sustainability. 2018. https://doi.org/10.3390/su10051581.

    Article  Google Scholar 

  6. Zhao H, Yan H, Dong S, Zhang Y, Sun B, Zhang C, Ai Y, Chen B, Liu Q, Sui T, Qin S. Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue. J Therm Anal Calorim. 2013;111:1685–90. https://doi.org/10.1007/s10973-011-2102-8.

    Article  CAS  Google Scholar 

  7. Ross AB, Anastasakis CH, Westwood A, Jones JM, Crewe RJ. Influence of cation on the pyrolysis and oxidation of alginates. J Anal Appl Pyrol. 2011;91:344–51. https://doi.org/10.1016/j.jaap.2011.03.012.

    Article  CAS  Google Scholar 

  8. Liu Y, Zhao J, Zhang C, Ji H, Zhu P. The flame retardancy, thermal properties, and degradation mechanism of zinc alginate films. J Macromol Sci B. 2014;53:1074–89. https://doi.org/10.1080/00222348.2014.891169.

    Article  CAS  Google Scholar 

  9. Pathak TS, Yun J-H, Lee S-J, Baek D-J, Paeng K-J. Effect of cross-linker and cross-linker concentration on porosity, surface morphology and thermal behavior of metal alginates prepared from algae (Undaria pinnatifida). Carbohydr Polym. 2009;78:717–24. https://doi.org/10.1016/j.carbpol.2009.06.011.

    Article  CAS  Google Scholar 

  10. Liu Y, Zhao X-R, Peng Y-L, Wang D, Yang L, Peng H, Zhu P, Wang D-Y. Effect of reactive time on flame retardancy and thermal degradation behavior of bio-based zinc alginate film. Polym Degrad Stabil. 2016;127:20–31. https://doi.org/10.1016/j.polymdegradstab.2015.12.024.

    Article  CAS  Google Scholar 

  11. Doherty SB, Gee VL, Ross RP, Stanton C, Fitzgerald GF, Brodkorb A. Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocoll. 2011;25(6):1604–17. https://doi.org/10.1016/j.foodhyd.2010.12.012.

    Article  CAS  Google Scholar 

  12. Liu Y, Zhang C-J, Zhao J-C, Guo Y, Zhu P, Wang D-Y. Bio-based barium alginate film: preparation, flame retardancy and thermal degradation behavior. Carbohydr Polym. 2016;139:106–14. https://doi.org/10.1016/j.carbpol.2015.12.044.

    Article  CAS  PubMed  Google Scholar 

  13. Liang Y, Liu C, Liao S, Lin Y, Tang H, Liu S, La I, Wu KC. Cosynthesis of cargo-loaded hydroxyapatite/alginate core−shell nanoparticles (HAP@Alg) as pH-responsive nanovehicles by a pregel method. ACS Symp. 2012;4:6720–7. https://doi.org/10.1021/am301895u.

    Article  CAS  Google Scholar 

  14. Aziz F, El Achaby M, Lissaneddine A, Aziz K, Ouazzani N, Mamouni R, Mandi L. Composites with alginate beads: a novel design of nano-adsorbents impregnation for large-scale continuous flow wastewater treatment pilots. Saudi J Biol Sci. 2019. https://doi.org/10.1016/j.sjbs.2019.11.019.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dalponte I, Sousa BC, Mathias AL, Jorge RMM. Formulation and optimization of a novel TiO2/calcium alginate floating photocatalyst. Int J Biol Macromol. 2019;137:992–1001. https://doi.org/10.1016/j.ijbiomac.2019.07.020.

    Article  CAS  PubMed  Google Scholar 

  16. Alves MB, Medeiros FCM, Suarez PAZ. Cadmium compounds as catalysts for biodiesel production. Ind Eng Chem Res. 2010;49(16):7176–82. https://doi.org/10.1021/ie100172u.

    Article  CAS  Google Scholar 

  17. Refaat AA. Biodiesel production using solid metal oxide catalysts. Int J Environ Sci Technol. 2011;8(1):203–21. https://doi.org/10.1007/BF03326210.

    Article  CAS  Google Scholar 

  18. Kispergher EM, D’Aquino CA, Junior LCC, Mello TC, Weinschutz R, Mathias AL. Effect of organic load and alkalinity on dairy wastewater biomethanation. Eng Agric. 2017;37(4):820–7. https://doi.org/10.1590/1809-4430-Eng.Agric.v37n4p820-827/2017.

    Article  Google Scholar 

  19. Cinelli P, Schmid M, Bugnicourt E, Wildner J, Bazzichi A, Anguillesi I, Lazzeri A. Whey protein layer applied on biodegradable packaging film to improve barrier properties while maintaining biodegradability. Polym Degrad Stabil. 2014;108:151–7. https://doi.org/10.1016/j.polymdegradstab.2014.07.007.

    Article  CAS  Google Scholar 

  20. Wijayanti HB, Bansal N, Deeth HC. Stability of whey proteins during thermal processing: a review. Compr Rev Food Sci F. 2014;13:1235–51. https://doi.org/10.1111/1541-4337.12105.

    Article  CAS  Google Scholar 

  21. Hundre SY, Karthik P, Anandharamakrishnan C. Effect of whey protein and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray-freeze drying method. Food Chem. 2015;174:16–24. https://doi.org/10.1016/j.foodchem.2014.11.016.

    Article  CAS  PubMed  Google Scholar 

  22. Cendon FV, Jorge RMM, Weinzschutz R, Mathias AL. Effect of matrix composition, sphere size and hormone concentration on diffusion coefficient of insulin for controlled gastrointestinal delivery for diabetes treatment. J Microencapsulation. 2018;35(1):13–25. https://doi.org/10.1080/02652048.2017.1409820.

    Article  CAS  Google Scholar 

  23. Svanberg L, Malmberg K, Gustinelli G, Öhgren C, Persson I. Effect of anthocyanins on lipid oxidation and microbial spoilage in value added emulsions with bilberry seed oil, anthocyanins and cold set whey protein hydrogels. Food Chem. 2019;272:273–8. https://doi.org/10.1016/j.foodchem.2018.06.064.

    Article  CAS  PubMed  Google Scholar 

  24. Ramos OL, Reinas I, Silva SI, Fernandes JC, Cerqueira MA, Pereira RN, Vicente AA, Poças MF, Pintado ME, Malcata FX. Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocoll. 2013;30(1):110–22. https://doi.org/10.1016/j.foodhyd.2012.05.001.

    Article  CAS  Google Scholar 

  25. Barreto PLM, Pires ATN, Soldi V. Thermal degradation of edible films based on milk proteins and gelatin in inert atmosphere. Polym Degrad Stabil. 2003;79:147–52. https://doi.org/10.1016/S0141-3910(02)00267-7.

    Article  CAS  Google Scholar 

  26. Bosco F, Carletto RA, Alongi J, Marmo L, Di Blasio A, Malucelli G. Thermal stability and flame resistance of cotton fabrics treated with whey proteins. Carbohydr Polym. 2013;94(1):372–7. https://doi.org/10.1016/j.carbpol.2012.12.075.

    Article  CAS  PubMed  Google Scholar 

  27. Tavares L, Noreña CPZ. Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray drying. Food Hydrocoll. 2019;89:360–9. https://doi.org/10.1016/j.foodhyd.2018.10.052.

    Article  CAS  Google Scholar 

  28. Oliveira ACS, Ugucioni JC, Rocha RA, Borges SV. Development of whey protein isolate/polyaniline smart packaging: Morphological, structural, thermal, and electrical properties. J Appl Polym Sci. 2018. https://doi.org/10.1002/app.47316.

    Article  Google Scholar 

  29. Chang Y, Joo E, Song H, Choi I, Yoon CS, Choi YJ, Han J. Development of protein-based high-oxygen barrier films using an industrial manufacturing facility. J Food Sci. 2019;84(2):303–10. https://doi.org/10.1111/1750-3841.14427.

    Article  CAS  PubMed  Google Scholar 

  30. Déat-Lainé E, Hoffart V, Cardot J, Subirade M, Beyssac E. Development and in vitro characterization of insulin loaded whey protein and alginate microparticles. Int J Pharm. 2012;439:136–44. https://doi.org/10.1016/j.ijpharm.2012.10.003.

    Article  CAS  PubMed  Google Scholar 

  31. Figueira FC, Hotza D, Bernardin AM. Obtaining grits by gelation of ceramic suspensions. Cerâmica. 2014;60(356):457–64. https://doi.org/10.1590/S0366-69132014000400002.

    Article  Google Scholar 

  32. Ozbek H, Fair JA, Phillips SL. Viscosity of Aqueous Sodium Chloride Solutions From 0 - 150°C. In: American Chemical Society 29th Southeast Regional Meeting. 1977. https://www.osti.gov/servlets/purl/988166. Accessed 12 Jul 2021.

  33. Chen H, Wang Y, Schiraldi DA. Foam-like materials based on whey protein isolate. Eur Polym J. 2013;49:3387–91. https://doi.org/10.1016/j.eurpolymj.2013.07.019.

    Article  CAS  Google Scholar 

  34. Malvern Instruments. Characterization of Whey Protein Isolate (WPI) using multi-detector size-exclusion chromatography. In: Malvern Instruments Application Notes. 2014. https://www.malvernpanalytical.com/br/learn/knowledge-center/application-notes/AN140821-Characterization-of-Whey-Protein-Isolate. Accessed 12 Jul 2021.

  35. Minghou J, Yujun W, Zuhong X, Yuca G. Studies on the M: g ratios in alginate. Hydrobiologia. 1984;116:554–6. https://doi.org/10.1007/978-94-009-6560-7_114.

    Article  Google Scholar 

  36. Bellich B, Borgogna M, Cok M, Cesàro A. Water evaporation from gel beads: a calorimetric approach to hydrogel matrix release properties. J Therm Anal Calorim. 2011;103:81–8. https://doi.org/10.1007/s10973-010-1170-5.

    Article  CAS  Google Scholar 

  37. Fang Y, Al-Assaf S, Phillips GO, Nishinari K, Funami T, Williams PA, Li L. Multiple steps and critical behaviors of the binding of calcium to alginate. J Phys Chem B. 2007;111(10):2456–62. https://doi.org/10.1021/jp0689870.

    Article  CAS  PubMed  Google Scholar 

  38. Khairou KS. Kinetics and mechanism of the non-isothermal decomposition I: some divalent cross-linked metal-alginate ionotropic gels. J Therm Anal Calorim. 2011;103:81–8. https://doi.org/10.1023/A:1019920108863.

    Article  Google Scholar 

  39. Parekh BB, Vyas PM, Vasant SR, Josh MJ. Thermal, FT–IR and dielectric studies of gel grown sodium oxalate single crystals. Bull Mater Sci. 2008;31(2):143–7. https://doi.org/10.1007/s12034-008-0025-1.

    Article  CAS  Google Scholar 

  40. Sikorski P, Mo F, Skjåk-Bræk G, Stokke BT. Evidence for egg-box-compatible interactions in calcium-alginate gels from FIBER X-ray diffraction. Biomacromol. 2007;8:2098–103. https://doi.org/10.1021/bm0701503.

    Article  CAS  Google Scholar 

  41. Said AA, Hassan RM. Thermal decomposition of some divalent metal alginate gel compounds. Polym Degrad Stabil. 1993;39:393–7. https://doi.org/10.1016/0141-3910(93)90015-B.

    Article  CAS  Google Scholar 

  42. Georgieva V, Vlaev L, Gyurova K. Non-isothermal degradation kinetics of CaCO3 from different origin. J Chem. 2013. https://doi.org/10.1155/2013/872981.

    Article  Google Scholar 

  43. Shedam MR, Shedam RM, Mathad SN. Microstures of CdC2O4.3H2O single crystal grown in silica gel. J Nano Electro Phys. 2016. https://doi.org/10.21272/jnep.8(4(2)).04075.

    Article  Google Scholar 

  44. Raj CJ, Joshi RK, Varma KBR. Synthesis from zinc oxalate, growth mechanism and optical properties of ZnO nano/micro structures. Cryst Res Technol. 2011;46(11):1181–8. https://doi.org/10.1002/crat.201100201.

    Article  CAS  Google Scholar 

  45. Pérez-Rodríguez JL, Duran A, Centeno MA, Martinez-Blanes JM, Robador MD. Thermal analysis of monument patina containing hydrated calcium oxalates. Thermochim Acta. 2011;512(1–2):5–12. https://doi.org/10.1016/j.tca.2010.08.015.

    Article  CAS  Google Scholar 

  46. Azevedo VM, Dias MV, Borges SV, Costa ALR, Silva EK, Medeiros EAA, Soares NFF. Development of whey protein isolate bio-nanocomposites: Effect of montmorillonite and citric acid on structural, thermal, morphological and mechanical properties. Food Hydrocoll. 2015;48:179–88. https://doi.org/10.1016/j.foodhyd.2015.02.014.

    Article  CAS  Google Scholar 

  47. Santana AA, Kieckbusch TG. Physical evaluation of biodegradable films of calcium alginate plasticized with polyols. Braz J Chem Eng. 2013;30(4):835–45. https://doi.org/10.1590/S0104-66322013000400015.

    Article  Google Scholar 

  48. Desai KH, Schwendeman SP. Active self-healing encapsulation of vaccine antigens in PLGA microspheres. J Control Release. 2013;165:62–74. https://doi.org/10.1016/j.jconrel.2012.10.012.

    Article  CAS  PubMed  Google Scholar 

  49. Liu S, Yu H, Huang K. Structural characteristics and biocompatibility of a casein-based nanocomposite for potential biomedical applications. J Mater Sci. 2018;53:3959–71. https://doi.org/10.1007/s10853-017-1860-5.

    Article  CAS  Google Scholar 

  50. Ren Q, Zhao C. NOx and N2O Precursors from biomass pyrolysis: nitrogen transformation from amino acid. Environ Sci Technol. 2012;46:4236–40. https://doi.org/10.1021/es204142e.

    Article  CAS  PubMed  Google Scholar 

  51. Haque ZZ, Aryana KJ. Effect of copper, iron, zinc and magnesium ions on bovine serum albumin gelation. Food Sci Technol Res. 2002;8(1):1–3. https://doi.org/10.3136/fstr.8.1.

    Article  CAS  Google Scholar 

  52. Sudaryanto Y, Hartono SB, Irawaty W, Hindarso H, Ismadji S. High surface area activated carbon prepared from cassava peel by chemical activation. Bioresour Technol. 2006;97:734–9. https://doi.org/10.1016/j.biortech.2005.04.029.

    Article  CAS  PubMed  Google Scholar 

  53. Soleimani M, Kaghazchi T. Adsorption of gold ions from industrial wastewater using activated carbon derivaded from hard shell of apricot stones: an agricultural waste. Bioresour Technol. 2008;99:5374–83. https://doi.org/10.1016/j.biortech.2007.11.021.

    Article  CAS  PubMed  Google Scholar 

  54. Mahapatra K, Ramteke DS, Paliwal LJ. Production of activated carbon from sludge of food processing industry under controlled pyrolysis and its application for methylene blue removal. J Anal Appl Pyrol. 2012;95:79–86. https://doi.org/10.1016/j.jaap.2012.01.009.

    Article  CAS  Google Scholar 

  55. Annadurai G, Juang R, Lee D. Factorial design analysis for adsorption of dye on activated carbon beads incorporated with calcium alginate. Adv Environ Res. 2002;6:191–8. https://doi.org/10.1016/S1093-0191(01)00050-8.

    Article  Google Scholar 

  56. Hassan AF, Abdel-Mohsen AM, Fouda MMG. Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption. Carbohydr Polym. 2014;102:192–8. https://doi.org/10.1016/j.carbpol.2013.10.104.

    Article  CAS  PubMed  Google Scholar 

  57. Hassan AF, Abdel-Mohsen AM, Elhadidy H. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads. Int J Biol Macromol. 2014;68:125–30. https://doi.org/10.1016/j.ijbiomac.2014.04.006.

    Article  CAS  PubMed  Google Scholar 

  58. Hu X, Lei L, Chu HP, Yue PL. Copper/activated carbon as catalyst for organic wastewater treatment. Carbon. 1999;37:631–7. https://doi.org/10.1016/S0008-6223(98)00235-8.

    Article  CAS  Google Scholar 

  59. Dabrowski A, Fekner Z, Leboda R, Goworek J. Steam-carbon gasification catalyzed by calcium: assessment of the porous structure of active carbons from plum stones and synthetic active carbons. Adsorption. 1997;3:233–42. https://doi.org/10.1007/BF01650134.

    Article  CAS  Google Scholar 

  60. Wan Z, Hameed BH. Transesterification of palm oil to methyl ester on activated carbon supported calcium oxide catalyst. Bioresour Technol. 2011;102:2659–64. https://doi.org/10.1016/j.biortech.2010.10.119.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Centro de Microscopia Eletrônica (CME) and the Laboratório de Espectroscopia de Absorção no Infravermelho (Departamento de Química), both from Universidade Federal do Paraná (UFPR), for the availability of their facilities and the professional help for conducting analyses of mid-infrared and scanning electron microscopy, respectively.

Funding

This study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant Number 405965/2016-8) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Grant Number 1528491, Finance code 001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection were performed by FVC and ASC. FVC analysed data and wrote the first draft of the manuscript. RMMJ and ALM reviewed and edited the manuscript. All authors read, commented on previous versions and approved the final manuscript.

Corresponding author

Correspondence to Alvaro Luiz Mathias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The reference citations 11 and 14 in the second paragraph of the Introduction section was changed to 14 and 15 respectively. The reference citations and reference list were renumbered accordingly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cendon, F.V., Carvalho, A.S., Jorge, R.M.M. et al. Comparative thermostability of whey protein and alginate hydrospheres complexed with divalent cations. J Therm Anal Calorim 147, 7253–7262 (2022). https://doi.org/10.1007/s10973-021-11057-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11057-x

Keywords

Navigation