Skip to main content
Log in

Effect of different additives on freezing characteristics and stability of GnP-aqueous-based PCM for cold thermal storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of the research work reports the thermal performance of graphene-water-based nanofluid phase change material (NFPCM) with different types of surfactants for a cold thermal storage (CTS) system. The graphene nanoplatelets (GnPs) are dispersed in DI water with the addition of commonly used surfactants, such as cetyltrimethylammonium bromide, sodium dodecylbenzene sulfonate (SDBS), sodium dodecylsulfate (SDS), polysorbate (Tween80), polyvinylpyrrolidone (PVP), and gum arabic (GA). The effect on the stability of different surfactants on the colloidal solution of GnP nanofluids is analyzed by zeta potential and particle size distribution. The average zeta potential values indicate that the SDBS-GnP, SDS-GnP, and GA-GnP combinations have good stability after 72 h. The freezing experiment is performed at − 7 °C cooling bath temperature in a spherical container and reveals that the surfactants have a significant influence on the supercooling rate and freezing time. The maximum reduction of 92.16% and 84.20% is observed for GA-GnP and SDBS-GnP in the supercooling rate, respectively. The prepared NFPCM can be incorporated in the CTS system owing to its enhanced thermal transport properties to increase the energy-saving potential. Also, the reduction of supercooling facilitates the chiller to operate at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The authors declare that all the data supporting the findings of this study are available within the article.

Abbreviations

T :

Temperature/°C

t :

Time/s

f :

Freezing

n :

Supercooling

\(\dot{\mathrm{q }}\) :

Average surface heat flux/W m2

m :

Mass of PCM/kg

λ :

Latent heat/KJ kg1

S :

Uncertainty

logg:

Data logger

ini:

Initial

fin:

Final

DI :

Deionized

BF:

Base fluid

GA:

Gum arabic

PCM :

Phase change material

DSC :

Differential scanning calorimetry

RTD :

Resistance temperature detector

PUF:

Polyurethane foam

TEM :

Transmission electron microscope

HTF :

Heat transfer fluid

GnP :

Graphene nanoplatelet

SDS:

Sodium dodecyl sulfate

NPE:

Nonylphenolethoxylate

PVP:

Polyvinylpyrrolidone

HRSEM:

High-resolution scanning electron microscopy

MWCNT:

Multi-wall carbon nanotubes

CTES :

Cool thermal energy storage

LTES:

Latent heat thermal energy storage

LDPE :

Low-density polyethylene

PTDC :

Proportionate temperature differential controller

NFPCM :

Nanofluid phase change material

SDBS:

Sodium dodecylbenzene sulfonate

CTAB:

Cetyltrimethylammonium bromide

References

  1. Souayfane F, Fardoun F, Biwole PH. Phase change materials (PCM) for cooling applications in buildings: a review. Energy Build. 2016;129:396–431. https://doi.org/10.1016/j.enbuild.2016.04.006.

    Article  Google Scholar 

  2. Velraj R, Cheralathan M, Renganarayanan S. Energy management through encapsulated PCM based storage system for large building air conditioning application. Int Energy J. 2006;7:253–9.

    Google Scholar 

  3. Sidik NAC, Kean TH, Chow HK, Rajaandra A, Rahman S, Kaur J. Performance enhancement of cold thermal energy storage system using nanofluid phase change materials: a review. Int Commun Heat Mass Transf. 2018;94:85–95. https://doi.org/10.1016/j.icheatmasstransfer.2018.03.024.

    Article  CAS  Google Scholar 

  4. Salunkhe PB, Shembekar PS. A review on effect of phase change material encapsulation on the thermal performance of a system. Renew Sustain Energy Rev. 2012. https://doi.org/10.1016/j.rser.2012.05.037.

    Article  Google Scholar 

  5. Nazir H, Batool M, Bolivar Osorio FJ, Isaza-Ruiz M, Xu X, Vignarooban K, et al. Recent developments in phase change materials for energy storage applications: a review. Int J Heat Mass Transf. 2019;129:491–523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126.

    Article  CAS  Google Scholar 

  6. Li G, Hwang Y, Radermacher R, Chun HH. Review of cold storage materials for subzero applications. Energy. 2013;51:1–17. https://doi.org/10.1016/j.energy.2012.12.002.

    Article  CAS  Google Scholar 

  7. Chandrasekaran P, Cheralathan M, Velraj R. Effect of fill volume on solidification characteristics of DI (deionized) water in a spherical capsule - An experimental study. Energy. 2015;90:508–15. https://doi.org/10.1016/j.energy.2015.07.086.

    Article  Google Scholar 

  8. Zou T, Fu W, Liang X, Wang S, Gao X, Zhang Z, Fang Y. Preparation and performance of modified calcium chloride hexahydrate composite phase change material for air-conditioning cold storage. Int J Refrig. 2018;95:175–81. https://doi.org/10.1016/j.ijrefrig.2018.08.001.

    Article  CAS  Google Scholar 

  9. Vikram MP, Kumaresan V, Christopher S, Velraj R. Experimental studies on solidification and subcooling characteristics of water-based phase change material (PCM) in a spherical encapsulation for cool thermal energy storage applications. Int J Refrig. 2019;100:454–62. https://doi.org/10.1016/j.ijrefrig.2018.11.025.

    Article  CAS  Google Scholar 

  10. Nematpour Keshteli A, Sheikholeslami M. Nanoparticle enhanced PCM applications for intensification of thermal performance in building: a review. J Mol Liq. 2019;274:516–33. https://doi.org/10.1016/j.molliq.2018.10.151.

    Article  CAS  Google Scholar 

  11. Prabakaran R, Sidney S, Lal DM, Selvam C, Harish S. Solidification of graphene-assisted phase change nanocomposites inside a sphere for cold storage applications. Energies. 2019. https://doi.org/10.3390/en12183473.

    Article  Google Scholar 

  12. Sathishkumar A, Cheralathan M. Influence of thermal transport properties of NEPCM for cool thermal energy storage system. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10339-0.

    Article  Google Scholar 

  13. Altohamy AA, Abd Rabbo MF, Sakr RY, Attia AAA. Effect of water based Al2O3 nanoparticle PCM on cool storage performance. Appl Therm Eng. 2015;84:331–8. https://doi.org/10.1016/j.applthermaleng.2015.03.066.

    Article  CAS  Google Scholar 

  14. Shah KW. A review on enhancement of phase change materials—A nanomaterials perspective. Energy Build. 2018;175:57–68. https://doi.org/10.1016/j.enbuild.2018.06.043.

    Article  Google Scholar 

  15. Kumaresan V, Chandrasekaran P, Nanda M, Maini AK, Velraj R. Role of PCM based nanofluids for energy efficient cool thermal storage system. Int J Refrig. 2013;36:1641–7. https://doi.org/10.1016/j.ijrefrig.2013.04.010.

    Article  CAS  Google Scholar 

  16. Munyalo JM, Zhang X, Xu X. Experimental investigation on supercooling, thermal conductivity and stability of nanofluid based composite phase change material. J Energy Storage. 2018;17:47–55. https://doi.org/10.1016/j.est.2018.02.006.

    Article  Google Scholar 

  17. Kim SC, Prabakaran R, Sakthivadivel D, Thangapandian N, Bhatia A, Kumar PG. Thermal transport properties of carbon-assisted phase change nanocomposite. Fullerenes Nanotub Carbon Nanostruct. 2020. https://doi.org/10.1080/1536383X.2020.1786814.

    Article  Google Scholar 

  18. Sathishkumar A, Kumaresan V, Velraj R. Solidification characteristics of water based graphene nanofluid PCM in a spherical capsule for cool thermal energy storage applications. Int J Refrig. 2016;66:73–83. https://doi.org/10.1016/j.ijrefrig.2016.01.014.

    Article  CAS  Google Scholar 

  19. Zahir MH, Mohamed SA, Saidur R, Al-Sulaiman FA. Supercooling of phase-change materials and the techniques used to mitigate the phenomenon. Appl Energy. 2019;240:793–817. https://doi.org/10.1016/j.apenergy.2019.02.045.

    Article  CAS  Google Scholar 

  20. Texter J. Graphene dispersions. Curr Opin Colloid Interface Sci. 2014;19:163–74. https://doi.org/10.1016/j.cocis.2014.04.004.

    Article  CAS  Google Scholar 

  21. Mingzheng Z, Guodong X, Jian L, Lei C, Lijun Z. Analysis of factors influencing thermal conductivity and viscosity in different kinds of surfactant solutions. Exp Therm Fluid Sci. 2012;36:22–9. https://doi.org/10.1016/j.expthermflusci.2011.07.014.

    Article  CAS  Google Scholar 

  22. Xian HW, Sidik NAC, Saidur R. Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids. Int Commun Heat Mass Transf. 2020. https://doi.org/10.1016/j.icheatmasstransfer.2019.104389.

    Article  Google Scholar 

  23. Le T, Omid B, Somchai M, Szilágyi IM. Review on the recent progress in the preparation and stability of graphene-based nanofluids modified hummers method. J Therm Anal Calorim. 2020;142:1145–72. https://doi.org/10.1007/s10973-020-09365-9.

    Article  CAS  Google Scholar 

  24. Nazari B, Ranjbar Z, Hashjin RR, Rezvani Moghaddam A, Momen G, Ranjbar B. Dispersing graphene in aqueous media: Investigating the effect of different surfactants. Colloid Surfaces A Physicochem Eng Asp. 2019. https://doi.org/10.1016/j.colsurfa.2019.123870.

    Article  Google Scholar 

  25. Gallego A, Cacua K, Herrera B, Cabaleiro D, Piñeiro MM, Lugo L. Experimental evaluation of the effect in the stability and thermophysical properties of water-Al2O3 based nanofluids using SDBS as dispersant agent. Adv Powder Technol. 2020;31:560–70. https://doi.org/10.1016/j.apt.2019.11.012.

    Article  CAS  Google Scholar 

  26. Wang J, Li G, Li T, Zeng M, Sundén B. Effect of various surfactants on stability and thermophysical properties of nanofluids. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09381-9.

    Article  Google Scholar 

  27. Calderón A, Barreneche C, Hernández-Valle K, Galindo E, Segarra M, Fernández AI. Where is Thermal energy storage (TES) research going? – A bibliometric analysis. Sol Energy. 2020;200:37–50. https://doi.org/10.1016/j.solener.2019.01.050.

    Article  Google Scholar 

  28. Jia L, Peng L, Chen Y, Mo S, Li X. Improving the supercooling degree of titanium dioxide nanofluids with sodium dodecylsulfate. Appl Energy. 2014;124:248–55. https://doi.org/10.1016/j.apenergy.2014.03.019.

    Article  CAS  Google Scholar 

  29. Yoon S, In I. Role of poly(N-vinyl-2-pyrrolidone) as stabilizer for dispersion of graphene via hydrophobic interaction. J Mater Sci. 2011;46:1316–21. https://doi.org/10.1007/s10853-010-4917-2.

    Article  CAS  Google Scholar 

  30. Rashmi W, Ismail AF, Sopyan I, Jameel AT, Khalid M, Mubarak NM. Stability and thermal conductivity enhancement of carbon nanotube nanofluid using gum arabic. J Exp Nanosci. 2011. https://doi.org/10.1080/17458080.2010.487229.

    Article  Google Scholar 

  31. Askari S, Lotfi R, Seifkordi A, Rashidi AM, Koolivand H. A novel approach for energy and water conservation in wet cooling towers by using MWNTs and nanoporous graphene nanofluids. Energy Convers Manag. 2016;109:10–8. https://doi.org/10.1016/j.enconman.2015.11.053.

    Article  CAS  Google Scholar 

  32. Sarsam WS, Amiri A, Kazi SN, Badarudin A. Stability and thermophysical properties of non-covalently functionalized graphene nanoplatelets nanofluids. Energy Convers Manag. 2016;116:101–11. https://doi.org/10.1016/j.enconman.2016.02.082.

    Article  CAS  Google Scholar 

  33. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1:3–17.

    Article  Google Scholar 

  34. Godson L, Deepak K, Enoch C, Jefferson Raja BR, Raja B. Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger. Arch Civ Mech Eng. 2014;14:489–96. https://doi.org/10.1016/j.acme.2013.08.002.

    Article  Google Scholar 

  35. Prabakaran R, Naveen JP, Dhasan K, Lal M. Constrained melting of graphene-based phase change nanocomposites inside a sphere. J Therm Anal Calorim. 2020;139:941–52. https://doi.org/10.1007/s10973-019-08458-4.

    Article  CAS  Google Scholar 

  36. Ilyas SU, Ridha S, Abdul Kareem FA. Dispersion stability and surface tension of SDS-Stabilized saline nanofluids with graphene nanoplatelets. Colloids Surfaces A Physicochem Eng Asp. 2020;592: 124584. https://doi.org/10.1016/j.colsurfa.2020.124584.

    Article  CAS  Google Scholar 

  37. Prabakaran R, Sidney S, Lal DM, Harish S, Kim SC. Experimental performance of a mobile air conditioning unit with small thermal energy storage for idle stop/start vehicles. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10863-7.

    Article  Google Scholar 

  38. Akyurt M, Zaki G, Habeebullah B. Freezing phenomena in ice-water systems. Energy Convers Manag. 2002;43:1773–89. https://doi.org/10.1016/S0196-8904(01)00129-7.

    Article  CAS  Google Scholar 

  39. Chandrasekaran P, Cheralathan M, Kumaresan V, Velraj R. Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system. Energy. 2014;72:636–42. https://doi.org/10.1016/j.energy.2014.05.089.

    Article  CAS  Google Scholar 

  40. Braga SL, Milón Guzmán JJ, Jiménez Pacheco HG. A study of cooling rate of the supercooled water inside of cylindrical capsules. Int J Refrig. 2009;32:953–9. https://doi.org/10.1016/j.ijrefrig.2008.10.014.

    Article  CAS  Google Scholar 

  41. Güémez J, Fiolhais C, Fiolhais M. Revisiting Black’s experiments on the latent heats of water. Phys Teach. 2002;40:26–31. https://doi.org/10.1119/1.1457825.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Department of Mechanical Engineering, Pondicherry Engineering College, Puducherry for the support and encouragement for carrying out this research work. The authors also like to thank the Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai for their motivation and support.

Funding

The authors state that they did not receive any specific grant from the funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

PS conducted the experiments in various surrounding conditions and consolidate the results. AK and PS interrupt the physical scenario behind the improvement of the thermophysical properties of the Phase Change Materials (PCM).

Corresponding author

Correspondence to P. Sundaram.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest in publishing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundaram, P., Kalaisselvane, A. Effect of different additives on freezing characteristics and stability of GnP-aqueous-based PCM for cold thermal storage. J Therm Anal Calorim 147, 8033–8045 (2022). https://doi.org/10.1007/s10973-021-11056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11056-y

Keywords

Navigation