Skip to main content
Log in

Surface modification of ammonium polyphosphate by kaolinite and the study on thermal decomposition behavior and flame-retardant performance

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The surface of ammonium polyphosphate is modified by layered silicates (kaolinite or functionalized kaolinite). The thermogravimetric analysis data confirm that the layered silicates significantly strengthen the thermal stability of polypropylene (PP) and increase the char residue. Fire safety of PP containing different percentages of modified ammonium polyphosphate and charring–foaming agent is assessed by using limiting oxygen index (LOI) and UL-94 vertical combustion. The addition of layered silicates in polymers can effectively enhance the flame-retardant properties including the enhancements in UL-94 rating and LOI results. The flame-retardant mechanism and model are described based on the results of thermal degradation and char residue analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hai Y, Jiang S, Qian XD, Zhang SD, Sun P, Xie B, et al. Ultrathin Beta-Nickel hydroxide nanosheets grown along multi-walled carbon nanotubes: A novel nanohybrid for enhancing flame retardancy and smoke toxicity suppression of unsaturated polyester resin. J Colloid Interf Sci. 2018;509:285–97.

    Article  CAS  Google Scholar 

  2. He S, Hu Y, Song L, Tang Y. Fire safety assessment of halogen-free flame retardant polypropylene based on cone calorimeter. J Fire Sci. 2007;25(2):109–18.

    Article  CAS  Google Scholar 

  3. Dahiya JB, Kumar N, Bockhorn H. Fire performance and thermal stability of polypropylene nanocomposites containing organic phosphinate and ammonium polyphosphate additives. Fire Mater. 2014;38(1):1–12.

    Article  CAS  Google Scholar 

  4. Gao SL, Li B, Bai P, Zhang SQ. Effect of polysiloxane and silane-modified SiO2 on a novel intumescent flame retardant polypropylene system. Polym Advan Technol. 2011;22(12):2609–16.

    Article  CAS  Google Scholar 

  5. Castrovinci A, Camino G, Drevelle C, Duquesne S, Magniez C, Vouters M. Ammonium polyphosphate-aluminum trihydroxide antagonism in fire retarded butadiene-styrene block copolymer. Eur Polym J. 2005;41(9):2023–33.

    Article  CAS  Google Scholar 

  6. Wang Z, Liu Y, Li J. Preparation of nucleotide-based microsphere and its application in intumescent flame retardant polypropylene. J Anal Appl Pyrol. 2016;121:394–402.

    Article  CAS  Google Scholar 

  7. Zhang JH, Kong QH, Wang DY. Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation. J Mater Chem A. 2018;6(15):6376–86.

    Article  CAS  Google Scholar 

  8. Kong QH, Sun YL, Zhang CJ, Guan HM, Zhang JH, Wang DY, et al. Ultrathin iron phenyl phosphonate nanosheets with appropriate thermal stability for improving fire safety in epoxy. Compos Sci Technol. 2019;182:107748–107748.

    Article  CAS  Google Scholar 

  9. Yuan BH, Fan A, Yang M, Chen XF, Hu Y, Bao C, et al. The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym Degrad Stabil. 2017;143:42–56.

    Article  CAS  Google Scholar 

  10. Lim KS, Bee ST, Sin LT, Tee TT, Ratnam CT, Hui D, et al. A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites. Compos Part B-Eng. 2016;84:155–74.

    Article  CAS  Google Scholar 

  11. Wen P, Wang X, Wang B, Yuan B, Zhou K, Song L, et al. One-pot synthesis of a novel s-triazine-based hyperbranched charring foaming agent and its enhancement on flame retardancy and water resistance of polypropylene. Ppolym Degrad Stabil. 2014;110:165–74.

    Article  CAS  Google Scholar 

  12. Ding P, Kang B, Zhang J, Yang J, Song N, Tang S, et al. Phosphorus-containing flame retardant modified layered double hydroxides and their applications on polylactide film with good transparency. J Colloid Interf Sci. 2015;440:46–52.

    Article  CAS  Google Scholar 

  13. Wang JS, Wang GH, Liu Y, Jiao YH, Liu D. Thermal stability, combustion behavior, and toxic gases in fire effluents of an intumescent flame-retarded polypropylene system. Ind Eng Chem Res. 2014;53(17):6978–84.

    Article  CAS  Google Scholar 

  14. Yuan BH, Sun Y, Chen X, Shi Y, Dai H, He S. Poorly-/well-dispersed graphene: abnormal influence on flammability and fire behavior of intumescent flame retardant. Compos Part A-Appl S. 2018;109:345–54.

    Article  CAS  Google Scholar 

  15. Yuan BH, Hu Y, Chen X, Shi Y, Niu Y, Zhang Y, et al. Dual modification of graphene by polymeric flame retardant and Ni(OH)2 nanosheets for improving flame retardancy of polypropylene. Compos Part A-Appl S. 2017;100:106–17.

    Article  CAS  Google Scholar 

  16. Du B, Ma H, Fang Z. How nano-fillers affect thermal stability and flame retardancy of intumescent flame retarded polypropylene. Polym Advan Technol. 2011;22(7):1139–46.

    Article  CAS  Google Scholar 

  17. Lecouvet B, Sclavons M, Bailly C, Bourbigot S. A comprehensive study of the synergistic flame retardant mechanisms of halloysite in intumescent polypropylene. Polym Degrad Stabil. 2013;98(11):2268–81.

    Article  CAS  Google Scholar 

  18. Kong QH, Wu T, Zhang HK, Zhang Y, Zhang MM, Si TY, et al. Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan. Appl Clay Sci. 2017;146:230–7.

    Article  CAS  Google Scholar 

  19. Mu X, Zhan J, Ma C, Pan Y, Chu F, Song L, et al. Integrated effect of flame retardant wrapped macromolecular covalent organic nanosheet on reduction of fire hazards of epoxy resin. Compos Part A-Appl S. 2019;117:23–33.

    Article  CAS  Google Scholar 

  20. Sun Y, Yuan BH, Chen X, Li K, Wang L, Yun Y, et al. Suppression of methane/air explosion by kaolinite-based multi-component inhibitor. Powder Technol. 2019;343:279–86.

    Article  CAS  Google Scholar 

  21. Hou XJ, Li H, Liu Q, Cheng H, He P, Lia S. Theoretical study for the interlamellar aminoalcohol functionalization of kaolinite. Appl Surf Sci. 2015;347:439–47.

    Article  CAS  Google Scholar 

  22. Nie S, Yuan H, Lei S, He Q, Yang D, Hao C. Synergistic effect between a char forming agent (CFA) and microencapsulated ammonium polyphosphate on the thermal and flame retardant properties of polypropylene. Polym Advan Technol. 2010;19(8):1077–83.

    Article  CAS  Google Scholar 

  23. Tang WF, Li HF, Zhang S, Sun J, Gu XY. The intercalation of ammonium sulfamate into kaolinite and its effect on the fire performance of polypropylene. J Thermoplast Compos. 2018;31(10):1352–70.

    Article  CAS  Google Scholar 

  24. Zheng Z, Sun H, Li W, Zhong S, Yan J, Cui X, et al. Co- microencapsulation of ammonium polyphosphate and aluminum hydroxide in halogen- free and intumescent flame retarding polypropylene. Polym Composite. 2014;35(4):715–29.

    Article  CAS  Google Scholar 

  25. Zhang Y, Xiang J, Zhang Q, Liu Q, Frost RL. Influence of kaolinite/carbon black hybridization on combustion and thermal decomposition behaviors of NR composites. Thermochim Acta. 2014;576:39–46.

    Article  CAS  Google Scholar 

  26. Huang YB, Jiang SH, Liang RC, Sun P, Hai Y, Zhang L. Thermal-triggered insulating fireproof layers: a novel fire-extinguishing MXene composites coating. Chem Eng J. 2020;391:123621.

    Article  CAS  Google Scholar 

  27. Li B, Zhan Z, Zhang H, Sun C. Flame retardancy and thermal performance of polypropylene treated with the intumescent flame retardant, piperazine spirocyclic phosphoramidate. J Vinyl Addit Techn. 2014;20(1):10–5.

    Article  CAS  Google Scholar 

  28. Shao ZB, Deng C, Tan Y, Chen MJ, Chen L, Wang YZ. An efficient mono-component polymeric intumescent flame retardant for polypropylene: preparation and application. ACS Appl Mater Inter. 2014;6(10):7363–70.

    Article  CAS  Google Scholar 

  29. Yan Y, Gu X, Li L, Li H, Sun J, Sheng Z. Preparation and characterization of intumescent flame retardant biodegradable poly(lactic acid) nanocomposites based on sulfamic acid intercalated layered double hydroxides. Fiber Polym. 2017;18(11):2060–9.

    Article  CAS  Google Scholar 

  30. Huang Y, Jiang S, Liang R, Liao Z, You G. A green highly-effective surface flame-retardant strategy for rigid polyurethane foam: transforming UV-cured coating into intumescent self-extinguishing layer. Compos Part A-Appl S. 2019;125:105534.

    Article  CAS  Google Scholar 

  31. Shi Y, Yu B, Zheng Y, Yang J, Duan Z, Hu Y. Design of reduced graphene oxide decorated with DOPO-phosphanomidate for enhanced fire safety of epoxy resin. J Colloid Interf Sci. 2018;521:160–71.

    Article  CAS  Google Scholar 

  32. Wang D, Feng X, Zhang L, Li M, Liu M, Tian A, et al. Cyclotriphosphazene-bridged periodic mesoporous organosilica-integrated cellulose nanofiber anisotropic foam with highly flame-retardant and thermally insulating properties. Chem Eng J. 2019;375:121933.

    Article  CAS  Google Scholar 

  33. Shi Y, Yu B, Duan L, Gui Z, Wang B, Hu Y, et al. Graphitic carbon nitride/phosphorus-rich aluminum phosphinates hybrids as smoke suppressants and flame retardants for polystyrene. J Hazard Mater. 2017;332:87–96.

    Article  CAS  PubMed  Google Scholar 

  34. Deng CL, Du SL, Zhao J, Shen ZQ, Deng C, Wang YZ. An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance. Polym Degrad Stabil. 2014;108:97–107.

    Article  CAS  Google Scholar 

  35. Fang M, Chen Z, Wang S, Lu H. The deposition of iron and silver nanoparticles in graphene–polyelectrolyte brushes. Nanotechnology. 2012;23(8):85704.

    Article  CAS  Google Scholar 

  36. Saihi D, Vroman I, Giraud S, Bourbigot S. Microencapsulation of ammonium phosphate with a polyurethane shell part I: Coacervation technique. React Funct Polym. 2005;64(3):127–38.

    Article  CAS  Google Scholar 

  37. Feng CM, Yi Z, Dong L, Liu SW, Chi ZG, Xu JR. Flame retardant mechanism of a novel intumescent flame retardant polypropylene. Procedia Eng. 2013;52:97–104.

    Article  CAS  Google Scholar 

  38. Feng X, Fan J, Li A, Li G. Multireusable thermoset with anomalous flame-triggered shape memory effect. ACS Appl Mater Inter. 2019;11(17):16075–86.

    Article  CAS  Google Scholar 

  39. Liu M, Jia Z, Jia D, Zhou C. Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci. 2014;39(8):1498–525.

    Article  CAS  Google Scholar 

  40. Kiliaris P. Papaspyrides CDJPiPS. Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci. 2010;35(7):902–58.

    Article  CAS  Google Scholar 

  41. Kashiwagi T, Harris RH Jr, Zhang X, Briber RM, Cipriano BH, Raghavan SR, Awad WH, Shields JR. Flame retardant mechanism of polyamide 6–clay nanocomposites. Polymer. 2004;45(3):881–91.

    Article  CAS  Google Scholar 

  42. Tang W, Zhang S, Gu X, Sun J, Jin X, Li H. Effects of kaolinite nanoroll on the flammability of polypropylene nanocomposites. Appl Clay Sci. 2016;132:579–88.

    Article  CAS  Google Scholar 

  43. Tang W, Qin Z, Liu F, Gong S, Peng C, Gu X, et al. Influence of two kinds of low dimensional nano-sized silicate clay on the flame retardancy of polypropylene. Mater Chem Phys. 2020;256:123743.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support for this work by the National Natural Science Foundation of China (51703175) and the Hubei Key Laboratory of Mineral Resources Processing and Environment (Wuhan University of Technology) (ZHJJ202007).

Author information

Authors and Affiliations

Authors

Contributions

Bihe Yuan involved in investigation, writing—original draft. Huidong Zhao involved in writing—review & editing, experiment, data curation. Shasha Wang participated in investigation, methodology, conceptualization, supervision.

Corresponding author

Correspondence to Shasha Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 258 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, B., Zhao, H. & Wang, S. Surface modification of ammonium polyphosphate by kaolinite and the study on thermal decomposition behavior and flame-retardant performance. J Therm Anal Calorim 147, 7311–7321 (2022). https://doi.org/10.1007/s10973-021-11051-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11051-3

Keywords

Navigation