Skip to main content
Log in

Comparison between Abel test stability and thermal decomposition behavior of nitrocellulose

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

This article has been updated

Abstract

Nitrocellulose (NC) is prone to spontaneous decomposition with exothermic heat release and thus is generally evaluated for stability during the storage process using standardized test methods such as the Abel test that measures the amount of nitrogen oxides (NOx) released from NC. In the present study, we evaluated the relative stability of various NC and NC-based propellants by monitoring the heat release behavior in an oxygen atmosphere via isothermal calorimetry. The results were compared with ones of the Abel test to evaluate the validity of the conventional stability test. The comparison revealed that there was no correlation between the stabilities predicted by the isothermal calorimetry and the results of the Abel test; some of the samples were evaluated as stable in the Abel test even if they released the decomposition heat easily, which means that the Abel test can occasionally overestimate the NC stability. In addition, the time change in the NOx release behavior based on the chemiluminescence method suggested that the Abel test mainly determined the desorption amount of NOx physically adsorbed on the surface of the samples, not that derived directly from the decomposition of NC. This possibly resulted in the incongruity with the results of the isothermal calorimetry, which instantly measures the heat released during decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 17 October 2021

    Modifications have been made to the Figures, Table 1, and font changes in section heading and references.

References

  1. Sandstrom J, Hafstrand A, Sjoberg P, Airbag device and propellant for airbags, US Patent 5,695,216A; 1996.

  2. R. Kodama, E. Sato, H. Yoshida, Small gas-generating device for gas actuator and pretensioner system. PCT, WO 2007/083663 Al; 2007.

  3. Gao X, Jiang L, Xu Q, J Hazard Mater 2020;386:121645.

  4. Katoh K, Higashi E, Ariyoshi Y, Wada Y, Nakano K. Sci Technol Energ Mater. 2013;74:132–7.

    CAS  Google Scholar 

  5. Kitagawa T. J Jpn Soc Saf Eng. 1971;10:48–59 (in Japanese).

    Google Scholar 

  6. Wang J, Fu G, Yan M. Proc Saf Prog. 2020;39: e12137. https://doi.org/10.1002/prs.12137.

    Article  Google Scholar 

  7. Chen Q, Wood M, Zhao J. Process Saf Environ Protect. 2019;131:178–88.

    Article  CAS  Google Scholar 

  8. Osada H, Kayaku Chemistry, Maruzen; 2003, pp. 279−81. (in Japanese).

  9. Koshi M, (Editorial board chair), Kayaku-gaku (2nd edition), Japan Explosives Industry Association Press; 1994, pp. 171−2. (in Japanese).

  10. Katoh K, Fukui S, Maeda A, Soramoto T, Matsunaga H, Higashi E, Kawaguchi S. Sci Technol Energ Mater. 2018;79:43–8.

    Google Scholar 

  11. Katoh K, Fukui S, Maeda A, Soramoto T, Matsunaga H, Higashi E, Kawaguchi S. Sci Technol Energ Mater. 2018;79:22–7.

    Google Scholar 

  12. Fukui S, Katoh K, Ogasawara Y, Matsunaga H, Higashi E, Kawaguchi S. Sci Technol Energ Mater. 2018;79:180–5.

    Google Scholar 

  13. Nakamura H, Matsuura N, Akiyoshi M. Sci Technol Energ Mater. 2000;61:108–13.

    CAS  Google Scholar 

  14. Demougin P, Landon M. Mem Poudres. 1937;27:182–9 (in French).

    CAS  Google Scholar 

  15. Katoh K, Lu L, Arai M, Tamura M. Sci Technol Energ Mater. 2004;65:77–81.

    CAS  Google Scholar 

  16. Katoh K, Lu L, Itoh M, Arai M, Tamura M. Sci Technol Energ Mater. 2003;64:236–40.

    CAS  Google Scholar 

  17. Katoh K, Soramoto T, Higashi E, Kawaguchi S, Kumagae K, Ito S, Wada Y, Nakano K, Arai M. Sci Technol Energ Mater. 2014;75:44–9.

    CAS  Google Scholar 

  18. Turcotte R, Acheson B, Armstrong K, Kwok QSM, Jones DEG, Paquet M, Proc. 33rd International Pyrotechnics Seminar 2006:351–61.

  19. Lussier LS, Bergeron E, Gagnon H. Propel Explos Pyrotech. 2006;31:253–62.

    Article  CAS  Google Scholar 

  20. Lussier LS, Gagnon H, Bohn MA. Propel Explos Pyrotech. 2000;25:117–25.

    Article  CAS  Google Scholar 

  21. Lindblom T. Propel Explos Pyrotech. 2002;27:197–208.

    Article  CAS  Google Scholar 

  22. Tong Y, Wu Z, Yang C, Yu J, Zhang X, Yang S, Deng X, Xu Y, Wen Y. Analyst. 2001;126:480–4.

    Article  CAS  Google Scholar 

  23. Bohn MA, Eisenreich N. Propel Explos Pyrotech. 1997;22:125–36.

    Article  CAS  Google Scholar 

  24. Urbanski T. Chemistry and Technology of Explosives, vol. III. First English edition: PWN; 1967. p. 564.

    Google Scholar 

  25. NATO STANAG 4170, Principles and methodology for the qualification of explosive materials for military use; 2008.

  26. NATO STANAG 4178, Test procedures for assessing the quality of deliveries of nitrocellulose from one NATO Nation to another; 2009.

  27. NATO STANAG 4556, Explosives: vacuum stability test; 1999.

  28. NATO STANAG 4582, Explosives, nitrocellulose based propellants, stability test procedure and requirements using heat flow calorimetry; 2007.

  29. JIS K 4810, Testing methods of explosives; 2019.

  30. Okada K, Investigation report on stability evaluation methods for explosives, Ministry of Economy, Trade and Industry. 2016. (in Japanese). https://www.meti.go.jp/meti_lib/report/2016fy/001007.pdf

  31. Yao E, Zhao N, Qin Z, Ma H, Li H, Xu S, An T, Yi J, Zhao F. Nanomaterials. 2020;10:725–42.

    Article  CAS  Google Scholar 

  32. Iwata Y. Sci Technol Energ Mater. 2019;80:80–5.

    Google Scholar 

  33. Luo Q, Ren T, Shen H, Zhang J, Liang D. Combust Sci Technol. 2018;190:579–90.

    Article  CAS  Google Scholar 

  34. Pourmortazavia SM, Hosseinia SG, Rahimi-Nasrabadib M, Hajimirsadeghia SS, Momenianb H. J Hazard Mater. 2009;162:1141–4.

    Article  Google Scholar 

  35. Katoh K, Lu L, Kumasaki M, Wada Y, Arai M. Thermochim Acta. 2005;431:168–72.

    Article  CAS  Google Scholar 

  36. Katoh K, Lu L, Kumasaki M, Wada Y, Arai M. Sci Technol Energ Mater. 2007;68:9–13.

    CAS  Google Scholar 

  37. Katoh K, Nakahama M, Kawaguchi S, Wada Y, Ogata Y, Arai M. Sci Technol Energ Mater. 2010;71:17–23.

    CAS  Google Scholar 

  38. Katoh K, Ito S, Higashi E, Nakano K, Ogata Y, Wada Y. J Therm Anal Calorim. 2010;100:303–8.

    Article  CAS  Google Scholar 

  39. Sopranetti R, Fahrni M, Vogelsanger B, Nitrocellulose characterization: survey of standardized testing methods, stability testing of NC, AWE Nitrocellulose Symposium. 2007.

  40. Trache D, Tarchoun AF. Crit Rev Anal Chem. 2019;49:415–38.

    Article  CAS  Google Scholar 

  41. Friedman HL. J Polym Sci Part C. 1964;6:183–95.

    Article  Google Scholar 

  42. Boudart M, Kinetics of Chemical Processes (translated by E. Oshima), Maruzen; 1970. pp.146−148. (in Japanese).

  43. Kawaguchi S, Kubota K, Nakatsuka K, Proc Autumn Conf Jpn Explos Soc 2002; 73–6. (in Japanese).

Download references

Acknowledgements

This work was supported by a Grant-in-aid for Scientific Research B, (KAKENHI 19H02390) and the Foundation for the Promotion of Industrial Explosives Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsumi Katoh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katoh, K., Fukui, S., Haba, A. et al. Comparison between Abel test stability and thermal decomposition behavior of nitrocellulose. J Therm Anal Calorim 147, 7563–7571 (2022). https://doi.org/10.1007/s10973-021-11043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11043-3

Keywords

Navigation