Skip to main content
Log in

Effect of Al2O3 and TiO2 nano-coated wick on the thermal performance of heat pipe

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A heat pipe is a passive two-phase heat exchanger technology, as a capillary-driven structure that allows heat transport by maintaining temperature difference. Heat pipe performance can be determined from the value of heat resistance, and nanoparticle can be applied to increase heat pipe performance. This research uses Al2O3 and TiO2 as a coating material for the heat pipe. The methods used in this research were by giving the heat pipe a nano-coating treatment using the electrophoretic deposition process and doing a pool boiling experiment by giving the heat pipe some heat loads. The main data of this research are temperature and bubble growth data. Based on the result of the research, the use of nanoparticles can improve heat pipe performance. The temperature difference between the evaporator and condenser area was calculated 2.38 °C on Al2O3 coating and 3.92 °C on TiO2 coating. Al2O3 nanoparticle coating was able to provide a heat transfer coefficient 480% superior to sample without nanoparticle coating, and 174% better than TiO2 nanoparticle coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

m :

Mass [kg]

\(\rho\) :

Density [kg m2]

h :

Heat Transfer Coefficient [W m2 K1]

q” :

Heat Flux [W m2]

T :

Temperature [K]

ΔT :

Temperature Difference [K]

\(P\) :

Electric Heater Power [W]

\(D\) :

Substrate Diameter [m]

\(L\) :

Substrate Length [m]

\(V\) :

Electric Heater Voltage [V]

\(I\) :

Electric Heater Current [A]

CHF:

Critical Heat Flux

HTC:

Heat Transfer Conductivity

CHF:

Critical Heat Flux

HTC:

Heat Transfer Conductivity

np:

Nanoparticle

di:

Distilled Water,

w:

Substrate Wall

sat:

Saturated Water

References

  1. Jouhara H, Chauhan A, Nannou T, Almahmoud S, Delpech B, Wrobel LC. Heat pipe based systems - advances and applications. Energy. 2017;128:729–54.

    Article  Google Scholar 

  2. Septiadi WN, Wulandari IGAAD, Murti MR, Ula WAW, Widiantara IKO, Widyantara IWG, Febraldo D. Cascade straight heat pipe for computer cooling system with nanofluid. Int J Technol. 2019;10:1635–42.

    Article  Google Scholar 

  3. Anonym. Heat Pipe Technology : Passive Heat Transfer for Greater Efficiency. 2018.

  4. Septiadi WN, Astawa K, Arvikadewi IGAP, Febraldo D, Putra GJP. Boiling phenomenon of graphene nano-coating wick heat pipe. Evergr Jt J Nov Carbon Resour Sci Green Asia Strateg. 2020;7:297–302.

    CAS  Google Scholar 

  5. Shafahi M, Bianco V, Vafai K, Manca O. Thermal performance of flat-shaped heat pipes using nanofluids. Int J Heat Mass Transf. 2010;53:1438–45.

    Article  CAS  Google Scholar 

  6. Midiani LPI, Septiadi WN, Winaya INS, Sucipta M, Putra N. Characterization of capillary pumping amount in novel sintered zeolites and hybrid zeolite-Cu for heat pipe applications. Int J Heat Mass Transf. 2019;145:118759.

    Article  CAS  Google Scholar 

  7. Putra N, Septiadi WN. Teknologi Pipa Kalor: Teori, Desain dan Aplikasi (Heat Pipe Technology: Theory, Design and Application). Jakarta: UI-PRESS; 2014.

    Google Scholar 

  8. Sary R, Septiadi WN, Putra N. Boiling phenomena in heat pipe with wick screen mesh variation and laying variations. 2012; 59–65.

  9. Irwansyah R. Didih Kolam Nanofluida pada Media Berpori Vertikal (Boiling Nanofluid Ponds in Vertical Porous Media). Universitas Indonesia. 2012.

  10. Xu ZG, Qu ZG, Zhao CY, Tao WQ. Pool boiling heat transfer on open-celled metallic foam sintered surface under saturation condition. Int J Heat Mass Transf. 2011;54:3856–67.

    Article  CAS  Google Scholar 

  11. Kreith F, Manglik RM, Bohn MS. Principles of heat transfer. Cengage learning; 2012.

  12. Sonawane T, Patil P, Chavhan A, Dusane BM. A review on heat transfer enhancement by passive methods. Int Res J Eng Technol. 2016;3:1567–74.

    Google Scholar 

  13. Rahman H. Experimental Study of Screen Mesh and Sintered Powder Wick on Heat Pipe Performance. Universitas Indonesia. 2011.

  14. Forrest E, Williamson E, Buongiorno J, Hu L-W, Rubner M, Cohen R. Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int J Heat Mass Transf. 2010;53:58–67.

    Article  CAS  Google Scholar 

  15. Takata Y, Hidaka S, Cao JM, Nakamura T, Yamamoto H, Masuda M, Ito T. Effect of surface wettability on boiling and evaporation. Energy. 2005;30:209–20.

    Article  CAS  Google Scholar 

  16. Stutz B, Morceli CHS, Da Silva MDF, Cioulachtjian S, Bonjour J. Influence of nanoparticle surface coating on pool boiling. Exp Therm Fluid Sci. 2011;35:1239–49.

    Article  CAS  Google Scholar 

  17. Kukulka DJ. Compound heat transfer enhancement methods to increase heat exchanger efficiency. 2012.

  18. Cieśliński JT. Nucleate pool boiling on porous metallic coatings. Exp Therm Fluid Sci. 2002;25:557–64.

    Article  Google Scholar 

  19. Min DH, Hwang GS, Usta Y, Cora ON, Koc M, Kaviany M. 2-D and 3-D modulated porous coatings for enhanced pool boiling. Int J Heat Mass Transf. 2009;52:2607–13.

    Article  CAS  Google Scholar 

  20. Dewangan AK, Kumar A, Kumar R. Experimental study of nucleate boiling heat transfer of R-134a and R-600a on thermal spray coating surfaces. Int J Therm Sci. 2016;110:304–13.

    Article  CAS  Google Scholar 

  21. Istiqomah DS, Kirom MR, Syarif DG. Sintesis Al2O3 nanopartikel dari bahan bijih bauksit untuk aplikasi pada model radiator. E-Proceedings Eng. 2016;3:2108–15.

    Google Scholar 

  22. Shirai T, Watanabe H, Fuji M, Takahashi M. Structural properties and surface characteristics on aluminum oxide powders. Annual report of the advanced cermics research center nagoya institute of technology 2009; 9:23–31.

  23. Grätzel M. Dye-sensitized solar cells. J Photochem Photobiol C Photochem Rev. 2003;4:145–53.

    Article  Google Scholar 

  24. Kolmakov A, Moskovits M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Ann Rev Mater Res. 2004;34:151–80.

    Article  CAS  Google Scholar 

  25. Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48:53–229.

    Article  CAS  Google Scholar 

  26. Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54:4051–68.

    Article  CAS  Google Scholar 

  27. Septiadi WN, Trisnadewi IANT, Putra N, Setyawan I. Synthesis of hybrid nanofluid with two-step method. 3rd Int Trop Renew Energy Conf Sustainable Dev Trop Renew Energy 2018; 67.

  28. Kishida S, Dong-Ying JU, Hong HE, Yi LI. Coating of γ-Al2O3 on the stainless steel substrate by electrophoretic deposition method. J Environ Sci. 2009;21:S112–5.

    Article  Google Scholar 

  29. Jo HS, An S, Nguyen XH, Il KY, Bang B-H, James SC, Choi J, Yoon SS. Modifying capillary pressure and boiling regime of micro-porous wicks textured with graphene oxide. Appl Therm Eng. 2018;128:1605–10.

    Article  CAS  Google Scholar 

  30. Shekriladze I. Boiling heat transfer: Convection controlled by nucleation. Heat Transf Model Methods Appl 2018; 91.

Download references

Acknowledgements

Thank you to the Ministry of Technology and Higher Education and the Udayana Institute for Research and Community Service for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayan Nata Septiadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Septiadi, W.N., Iswari, G.A., Sudarsana, P.B. et al. Effect of Al2O3 and TiO2 nano-coated wick on the thermal performance of heat pipe. J Therm Anal Calorim 147, 6193–6205 (2022). https://doi.org/10.1007/s10973-021-11034-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11034-4

Keywords

Navigation