Skip to main content
Log in

Study on the performance assessment of a novel hybrid heat pump system modified with dedicated mechanical sub-cooler for domestic heating applications

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article investigates the performance of a novel hybrid heat pump system, which is developed to recover the waste heat from the flue gas of domestic heating boiler. The purpose of proposed system is: to increase the return water temperature, to heat the boiler supply air, and to provide the hot air for indoor heating. The developed system consists of an air heater (acts as a dedicated mechanical sub-cooler), a multistage condensing economizer and a vapor compression heat pump. A test case of common building is considered for the performance assessment of system, which is based on the 4E analysis. For this purpose, ten refrigerants are selected. The results show that about 25.58% increase in the coefficient of performance can be obtained for the proposed model as compared to simple vapor compression cycle if operated with R245fa, which also have a lowest exergy destruction rate (38.27%) as compared to other studied refrigerants. From the perspective of improvement in boiler’s energy and exergy efficiency, R114 is used to be the most effective among other refrigerant (10.33% increase in energy efficiency and 4.74% increase in exergy efficiency). Parametric study results have shown that the variation in ambient conditions should be considered carefully while selecting a refrigerant to significantly improve the system performance, exergy efficiency, and relevant economics on regional basis. From the obtained results, a novel yet simple refrigerant selection approach is proposed which can also be adopted for other thermodynamic cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(A\) :

Heat transfer area, m2

ALR :

Annual leakage rate, % of RC

AAD:

Average absolute deviation, %

\(B\) :

Fuel saved, kg

BCRA :

Benefit-to-cost ratio analysis

\(C_{{\text{p}}}\) :

Specific heat, kJ kg1 K1

COP :

Coefficient of performance

\(C\) :

Penalty cost, $ ton1

\(D\) :

Tube diameter, m

\(D_{{\text{P}}}\) :

Depletion number

Ė :

Exergy, kW

EOL :

End of life leakage, % of RC

\(F\) :

Fouling factor, m2·K kW1

f :

Frictional factor

\(H\) :

Humidity, kg of water vapor per kg of dry fly gas

\(h\) :

Specific enthalpy, kJ kg1

\(h_{{{\text{if}}}} , h_{{{\text{of}}}}\) :

Heat transfer coefficient inside and outside the tubes, kW m2 K1

\(\dot{I}\) :

Irreversibility, kW

K :

Thermal conductivity, kW m1 K1

LHV :

Lower heating value, kJ Nm3

LT :

System lifetime, years

\(M\) :

Molar mass, kg kmol1

\(m\) :

Mass, kg Nm3 of fuel)

\(\dot{m}\) :

Mass flow rate, kg s1

\(M_{{{\text{emissions}}}}\) :

Mass equivalent to emissions, kg

\(N\) :

Fuel consumption, kg

Nu :

Nusselt number

\(P\) :

Pressure, Pa

Pr :

Prandtl number

\(\dot{Q}\) :

Heat transfer rate, kW

Re :

Reynolds number

RC :

Refrigerant charge, kg

\(s\) :

Specific entropy, kJ kg1 K1

\(\it {\text{SI}}\) :

Sustainability index

\(T\) :

Ambient temperature, ℃

\(t\) :

Time, hours

\(U\) :

Overall heat transfer coefficient, kW m2 K1)

\(\dot{V}\) :

Volume flow rate, m3 s1

\(\dot{W}\) :

Power, kW

\(x\) :

Mass fraction, %

\(\dot{x}\) :

Exergy destruction, kW

\(Z\) :

Total penalty cost saved, $

\(\varphi\) :

Relative humidity

\(\Delta T\) :

Temperature difference, ℃

\(\eta\) :

Efficiency, %

\(\mu\) :

Emission factor

A:

Ambient

cw:

Condensed water

dg:

Dry flue gas

dp:

Dew point

If:

Inside flow

O:

Reference or dead state

of:

Outside flow

op:

Operating

P:

Partial

ref:

Refrigerant

s:

Saturated

sl:

Surface losses

T:

Total

wv:

Water vapor

w:

Water

wo:

Water leaving the boiler

wi:

Water entering the boiler

AH:

Air heater

Aux:

Auxiliaries

B:

Blower

CEPCI:

Chemical Engineering Plant Cost Index

COMP:

Compressor

COND:

Condenser

C:

Chimney

EVAP:

Evaporator

FG:

Flue gas

GWP:

Global warming potential

HA:

Hot air

IDCCU:

Indirect contact condensing unit

LHV:

Lower heating value

LMTD:

Logarithmic mean temperature difference

NG:

Natural gas

ODP:

Ozone depletion potential

RW:

Return water

SA:

Supply air

SW:

Supply water

WHR:

Waste heat recovery

References

  1. IEA. Carbondioxide emission from fuels combustion, International Energy Agency, OECD, Paris. 2017.

  2. Allen MR, Stocker TF. Impact of delay in reducing carbon dioxide emissions. Nat Clim Chang. 2014;4:23–6. https://doi.org/10.1038/nclimate2077.

    Article  CAS  Google Scholar 

  3. Kim K-H, Jahan SA, Kabir E. A review of diseases associated with household air pollution due to the use of biomass fuels. J Hazard Mater. 2011;192:425–31. https://doi.org/10.1016/J.JHAZMAT.2011.05.087.

    Article  CAS  PubMed  Google Scholar 

  4. Jouhara H. Waste heat recovery technologies and applications waste heat recovery technologies and applications. Therm Sci Eng Prog. 2018. https://doi.org/10.1016/j.tsep.2018.04.017.

    Article  Google Scholar 

  5. Jeong K, Kessen MJ, Bilirgen H, Levy EK. Analytical modeling of water condensation in condensing heat exchanger. Int J Heat Mass Transf. 2010;53:2361–8. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.004.

    Article  CAS  Google Scholar 

  6. Barma MC, Saidur R, Rahman SMA, Allouhi A, Akash BA, Sait SM. A review on boilers energy use, energy savings, and emissions reductions. Renew Sustain Energy Rev. 2017;79:970–83. https://doi.org/10.1016/j.rser.2017.05.187.

    Article  Google Scholar 

  7. Wan H, Cao T, Hwang Y, Oh S. A review of recent advancements of variable refrigerant flow air-conditioning systems. Appl Therm Eng. 2020. https://doi.org/10.1016/j.applthermaleng.2019.114893.

    Article  Google Scholar 

  8. Lun YHV, Tung SLD. Heat Pumps for Sustainable Heating and Cooling. Berlin: Springer; 2020.

    Book  Google Scholar 

  9. Jamil SR, Wang L, Che D. Techno-economic analysis of a novel hybrid heat pump system to recover waste heat and condensate from the low-temperature boiler exhaust gas. Int J Energy Res. 2020. https://doi.org/10.1002/er.5172.

    Article  Google Scholar 

  10. Luo B, Zou P. Performance analysis of different single stage advanced vapor compression cycles and refrigerants for high temperature heat pumps. Int J Refrig. 2019;104:246–58. https://doi.org/10.1016/j.ijrefrig.2019.05.024.

    Article  CAS  Google Scholar 

  11. Cooper SJG, Hammond GP, Hewitt N, Norman JB, Tassou SA, Youssef W. Energy saving potential of high temperature heat pumps in the UK Food and Drink sector. Energy Procedia. 2019;161:142–9. https://doi.org/10.1016/j.egypro.2019.02.073.

    Article  Google Scholar 

  12. Todorović D, Tomić M, Bojanić R, Bajatović D, Anđelković AS. A comparative analysis of a heat pump application with grey wastewater source for domestic hot water preparation in hotels. J Therm Anal Calorim. 2020;141:559–72. https://doi.org/10.1007/s10973-020-09495-0.

    Article  CAS  Google Scholar 

  13. Bergamini R, Jensen JK, Elmegaard B. Thermodynamic competitiveness of high temperature vapor compression heat pumps for boiler substitution. Energy. 2019;182:110–21. https://doi.org/10.1016/j.energy.2019.05.187.

    Article  Google Scholar 

  14. Mateu-Royo C, Sawalha S, Mota-Babiloni A, Navarro-Esbrí J. High temperature heat pump integration into district heating network. Energy Convers Manag. 2020;210: 112719. https://doi.org/10.1016/j.enconman.2020.112719.

    Article  CAS  Google Scholar 

  15. Deymi-Dashtebayaz M, Maddah S, Goodarzi M, Maddah O. Investigation of the effect of using various HFC refrigerants in geothermal heat pump with residential heating applications. J Therm Anal Calorim. 2020;141:361–72. https://doi.org/10.1007/s10973-020-09539-5.

    Article  CAS  Google Scholar 

  16. Bamigbetan O, Eikevik TM, Nekså P, Bantle M, Schlemminger C. The development of a hydrocarbon high temperature heat pump for waste heat recovery. Energy. 2019;173:1141–53. https://doi.org/10.1016/j.energy.2019.02.159.

    Article  CAS  Google Scholar 

  17. Song Y, Li D, Cao F, Wang X. Theoretical investigation on the combined and cascade CO2/R134a heat pump systems for space heating. Appl Therm Eng. 2017;124:1457–70. https://doi.org/10.1016/j.applthermaleng.2017.06.014.

    Article  CAS  Google Scholar 

  18. Ma X, Zhang Y, Li X, Zou H, Deng N, Nie J, et al. Experimental study for a high efficiency cascade heat pump water heater system using a new near-zeotropic refrigerant mixture. Appl Therm Eng. 2018;138:783–94. https://doi.org/10.1016/j.applthermaleng.2017.12.124.

    Article  CAS  Google Scholar 

  19. D’Agaro P, Cortella G, Polzot A. R744 booster integrated system for full heating supply to supermarkets. Int J Refrig. 2018;96:191–200. https://doi.org/10.1016/j.ijrefrig.2018.09.028.

    Article  CAS  Google Scholar 

  20. Mota-Babiloni A, Mateu-Royo C, Navarro-Esbrí J, Molés F, Amat-Albuixech M, Barragán-Cervera Á. Optimisation of high-temperature heat pump cascades with internal heat exchangers using refrigerants with low global warming potential. Energy. 2018;165:1248–58. https://doi.org/10.1016/j.energy.2018.09.188.

    Article  CAS  Google Scholar 

  21. Fukuda S, Kondou C, Takata N, Koyama S. Low GWP refrigerants R1234ze(E) and R1234ze(Z) for high temperature heat pumps. Int J Refrig. 2014;40:161–73. https://doi.org/10.1016/j.ijrefrig.2013.10.014.

    Article  CAS  Google Scholar 

  22. Maddah S, Safaei MR. Determination of the optimal discharge pressure of the transcritical CO2 heat pump cycles for heating and cooling performances based on new correlation. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-021-10723-4.

    Article  Google Scholar 

  23. Urbanucci L, Bruno JC, Testi D. Thermodynamic and economic analysis of the integration of high-temperature heat pumps in trigeneration systems. Appl Energy. 2019;238:516–33. https://doi.org/10.1016/j.apenergy.2019.01.115.

    Article  Google Scholar 

  24. Pitarch M, Hervas-Blasco E, Navarro-Peris E, Corberán JM. Exergy analysis on a heat pump working between a heat sink and a heat source of finite heat capacity rate. Int J Refrig. 2019;99:337–50. https://doi.org/10.1016/j.ijrefrig.2018.11.044.

    Article  Google Scholar 

  25. Sarafraz MM, Goodarzi M, Tlili I, Alkanhal TA, Arjomandi M. Thermodynamic potential of a high-concentration hybrid photovoltaic/thermal plant for co-production of steam and electricity. J Therm Anal Calorim. 2021;143:1389–98. https://doi.org/10.1007/s10973-020-09914-2.

    Article  CAS  Google Scholar 

  26. Mehrdad S, Dadsetani R, Amiriyoon A, Leon AS, Safaei MR, Goodarzi M. Exergo-economic optimization of organic rankine cycle for saving of thermal energy in a sample power plant by using of strength pareto evolutionary algorithm II. Processes. 2020. https://doi.org/10.3390/pr8030264.

    Article  Google Scholar 

  27. Sheikholeslami M, Jafaryar M. Nanoparticles for improving the efficiency of heat recovery unit involving entropy generation analysis. J Taiwan Inst Chem Eng. 2020;115:96–107. https://doi.org/10.1016/j.jtice.2020.09.033.

    Article  CAS  Google Scholar 

  28. Sheikholeslami M, Jafaryar M, Said Z, Alsabery AI, Babazadeh H, Shafee A. Modification for helical turbulator to augment heat transfer behavior of nanomaterial via numerical approach. Appl Therm Eng. 2021;182: 115935. https://doi.org/10.1016/j.applthermaleng.2020.115935.

    Article  Google Scholar 

  29. Goodarzi M, Toghraie D, Reiszadeh M, Afrand M. Experimental evaluation of dynamic viscosity of ZnO–MWCNTs/engine oil hybrid nanolubricant based on changes in temperature and concentration. J Therm Anal Calorim. 2019;136:513–25. https://doi.org/10.1007/s10973-018-7707-8.

    Article  CAS  Google Scholar 

  30. Bahiraei M, Jamshidmofid M, Goodarzi M. Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. J Mol Liq. 2019;273:88–98. https://doi.org/10.1016/j.molliq.2018.10.003.

    Article  CAS  Google Scholar 

  31. Yarmand H, Gharehkhani S, Shirazi SFS, Goodarzi M, Amiri A, Sarsam WS, et al. Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. Int Commun Heat Mass Transf. 2016;77:15–21. https://doi.org/10.1016/j.icheatmasstransfer.2016.07.010.

    Article  CAS  Google Scholar 

  32. Giwa SO, Sharifpur M, Goodarzi M, Alsulami H, Meyer JP. Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. J Therm Anal Calorim. 2021;143:4149–67. https://doi.org/10.1007/s10973-020-09372-w.

    Article  CAS  Google Scholar 

  33. Afridi MI, Tlili I, Goodarzi M, Osman M, Khan NA. Irreversibility analysis of hybrid nanofluid flow over a thin needle with effects of energy dissipation. Symmetry (Basel). 2019. https://doi.org/10.3390/sym11050663.

    Article  Google Scholar 

  34. Xu Y, Jiang N, Pan F, Wang Q, Gao Z, Chen G. Comparative study on two low-grade heat driven absorption-compression refrigeration cycles based on energy, exergy, economic and environmental (4E) analyses. Energy Convers Manag. 2017;133:535–47. https://doi.org/10.1016/j.enconman.2016.10.073.

    Article  CAS  Google Scholar 

  35. Liu X, Yang X, Yu M, Zhang W, Wang Y, Cui P, et al. Energy, exergy, economic and environmental (4E) analysis of an integrated process combining CO2 capture and storage, an organic Rankine cycle and an absorption refrigeration cycle. Energy Convers Manag. 2020. https://doi.org/10.1016/j.enconman.2020.112738.

    Article  Google Scholar 

  36. Deymi-Dashtebayaz M, Valipour-Namanlo S. Thermoeconomic and environmental feasibility of waste heat recovery of a data center using air source heat pump. J Clean Prod. 2019;219:117–26. https://doi.org/10.1016/j.jclepro.2019.02.061.

    Article  Google Scholar 

  37. Maddah S, Deymi-Dashtebayaz M, Maddah O. 4E analysis of thermal recovery potential of industrial wastewater in heat pumps: An invisible energy resource from the iranian casting industry sector. J Clean Prod. 2020;265: 121824. https://doi.org/10.1016/j.jclepro.2020.121824.

    Article  Google Scholar 

  38. Jain V, Sachdeva G, Kachhwaha SS. Energy, exergy, economic and environmental (4E) analyses based comparative performance study and optimization of vapor compression-absorption integrated refrigeration system. Energy. 2015;91:816–32. https://doi.org/10.1016/j.energy.2015.08.041.

    Article  Google Scholar 

  39. Liu S, Li Z, Dai B, Zhong Z, Li H, Song M, et al. Energetic, economic and environmental analysis of air source transcritical CO2 heat pump system for residential heating in China. Appl Therm Eng. 2019;148:1425–39. https://doi.org/10.1016/j.applthermaleng.2018.08.061.

    Article  CAS  Google Scholar 

  40. Maddah S, Goodarzi M, Safaei MR. Comparative study of the performance of air and geothermal sources of heat pumps cycle operating with various refrigerants and vapor injection. Alexandria Eng J. 2020;59:4037–47. https://doi.org/10.1016/j.aej.2020.07.009.

    Article  Google Scholar 

  41. Dadsetani R, Sheikhzadeh GA, Safaei MR, Alnaqi AA, Amiriyoon A. Exergoeconomic optimization of liquefying cycle for noble gas argon. Heat Mass Transf Und Stoffuebertragung. 2019;55:1995–2007. https://doi.org/10.1007/s00231-018-2501-5.

    Article  CAS  Google Scholar 

  42. Arpagaus C, Bless F, Uhlmann M, Schiffmann J, Bertsch SS. High temperature heat pumps: market overview, state of the art, research status, refrigerants, and application potentials. Energy. 2018;152:985–1010. https://doi.org/10.1016/j.energy.2018.03.166.

    Article  CAS  Google Scholar 

  43. Wu D, Yan H, Hu B, Wang RZ. Modeling and simulation on a water vapor high temperature heat pump system. Energy. 2019;168:1063–72. https://doi.org/10.1016/j.energy.2018.11.113.

    Article  Google Scholar 

  44. Liu Y, Han J, You H. Exergoeconomic analysis and multi-objective optimization of a CCHP system based on LNG cold energy utilization and flue gas waste heat recovery with CO2 capture. Energy. 2019. https://doi.org/10.1016/j.energy.2019.116201.

    Article  Google Scholar 

  45. Che D, Liu Y, Gao C. Evaluation of retrofitting a conventional natural gas fired boiler into a condensing boiler. Energy Convers Manag. 2004;45:3251–66. https://doi.org/10.1016/j.enconman.2004.01.004.

    Article  CAS  Google Scholar 

  46. Qu M, Abdelaziz O, Yin H. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement. Energy Convers Manag. 2014;87:175–84. https://doi.org/10.1016/j.enconman.2014.06.083.

    Article  Google Scholar 

  47. Wang J, Hua J, Fu L, Wang Z, Zhang S. A theoretical fundamental investigation on boilers equipped with vapor-pump system for flue-gas heat and moisture R. Energy. 2019;171:956–70.

    Article  Google Scholar 

  48. Terhan M, Comakli K. Energy and exergy analyses of natural gas-fired boilers in a district heating system. Appl Therm Eng. 2017;121:380–7. https://doi.org/10.1016/j.applthermaleng.2017.04.091.

    Article  Google Scholar 

  49. Maalouf S, Boulawz Ksayer E, Clodic D. Investigation of direct contact condensation for wet flue-gas waste heat recovery using organic Rankine cycle. Energy Convers Manag. 2016;107:96–102. https://doi.org/10.1016/j.enconman.2015.09.047.

    Article  CAS  Google Scholar 

  50. Cox KR, Chapman WG. The properties of gases and liquids, 5th Edition By Bruce E. Poling (University of Toledo), John M. Prausnitz (University of California at Berkeley), and John P. O’Connell (University of Virginia). McGraw-Hill: New York. 2001. 768 pp. $115.00. ISBN 0–07-. vol. 123. 2001. https://doi.org/10.1021/ja0048634.

  51. Shah RK, Sekulic DP. Fundamentals of heat exchanger design. New Jersey: Wiley; 2003.

    Book  Google Scholar 

  52. Farshi LG, Khalili S. Thermoeconomic analysis of a new ejector boosted hybrid heat pump (EBHP) and comparison with three conventional types of heat pumps. Energy. 2019;170:619–35. https://doi.org/10.1016/j.energy.2018.12.155.

    Article  Google Scholar 

  53. Sauer, Harry J.; Howell, Ronald Hunter; Coad WJ. Principles of heating ventilating and air conditioning. ASHRAE; 2013.

  54. Liu F. Review of AC, heat pump and refrigeration systems using natural refrigerants. In: W. H, G. Z, editors. 11th IIR Gustav Lorentzen Conf. Nat. Refrig. GL 2014, Shanghai University of Electric Power, 2103 Pingliang Road, Yangpu District, Shanghai, 200090, China: International Institute of Refrigeration; 2014, p. 569–76.

  55. Garousi Farshi L, Mahmoudi SMS, Rosen MA, Yari M, Amidpour M. Exergoeconomic analysis of double effect absorption refrigeration systems. Energy Convers Manag. 2013;65:13–25. https://doi.org/10.1016/j.enconman.2012.07.019.

    Article  CAS  Google Scholar 

  56. Smith R. Chemical process design and integration. New Jersey: John Wiley & Sons Ltd; 2016.

    Google Scholar 

  57. Zhang G, Xiao H, Zhang P, Wang B, Li X, Shi W, et al. Review on recent developments of variable refrigerant flow systems since 2015. Energy Build. 2019;198:444–66. https://doi.org/10.1016/j.enbuild.2019.06.032.

    Article  Google Scholar 

  58. David R, Ngulube P, Dube A. A cost-benefit analysis of document management strategies used at a financial institution in Zimbabwe: a case study. SA J Inf Manag. 2013;15:1–10. https://doi.org/10.4102/sajim.v15i2.540.

    Article  Google Scholar 

  59. Zhang C, Liu C, Xu X, Li Q, Wang S. Energetic, exergetic, economic and environmental (4E) analysis and multi-factor evaluation method of low GWP fluids in trans-critical organic Rankine cycles. Energy. 2019;168:332–45. https://doi.org/10.1016/j.energy.2018.11.104.

    Article  CAS  Google Scholar 

  60. Zhu N, Qian L, Jiang D, Mbroh N. A simulation study of China’s imposing carbon tax against American carbon tariffs. J Clean Prod. 2020;243: 118467. https://doi.org/10.1016/j.jclepro.2019.118467.

    Article  Google Scholar 

  61. Zhang Q, Zhang L, Nie J, Li Y. Techno-economic analysis of air source heat pump applied for space heating in northern China. Appl Energy. 2017;207:533–42.

    Article  Google Scholar 

  62. Ahmadi P, Dincer I, Rosen MA. Exergo-environmental analysis of an integrated organic Rankine cycle for trigeneration. Energy Convers Manag. 2012;64:447–53. https://doi.org/10.1016/j.enconman.2012.06.001.

    Article  Google Scholar 

  63. Hou J, Che D, Liu Y, Jiang Q. A new system of absorption heat pump vs. boiler for recovering heat and water vapor in flue gas. Energy Procedia. 2018;152:1266–71.

    Article  Google Scholar 

  64. Ju F, Fan X, Chen Y, Ouyang H, Kuang A, Ma S, et al. Experiment and simulation study on performances of heat pump water heater using blend of R744/R290. Energy Build. 2018;169:148–56. https://doi.org/10.1016/j.enbuild.2018.03.063.

    Article  Google Scholar 

  65. Nasriani HR, Jamiolahmady M, Saif T, Sánchez J. A systematic investigation into the flowback cleanup of hydraulic-fractured wells in unconventional gas plays. Int J Coal Geol. 2018;193:46–60. https://doi.org/10.1016/j.coal.2018.04.012.

    Article  CAS  Google Scholar 

Download references

Funding

The financial support from the National Natural Science Foundation of China (Grant No. 51806171) is gratefully acknowledged. The authors also appreciate the study support provided by Xi’an Jiaotong University.

Author information

Authors and Affiliations

Authors

Contributions

SRJ was involved in the conceptualization, methodology, software, validation, data curation, and writing—original draft. LW contributed to the formal analysis, investigation, methodology, and writing—review and editing. HSA was involved in the data curation and writing—review and editing. DC was involved in the supervision, funding acquisition, project administration, and writing—review and editing.

Corresponding author

Correspondence to Defu Che.

Ethics declarations

Conflicts of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamil, S.R., Wang, L., Arslan, H.S. et al. Study on the performance assessment of a novel hybrid heat pump system modified with dedicated mechanical sub-cooler for domestic heating applications. J Therm Anal Calorim 147, 7489–7508 (2022). https://doi.org/10.1007/s10973-021-11017-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11017-5

Keywords

Navigation