Skip to main content
Log in

Preparation and characterization of smart (solid–gel) shape-stable phase change materials with photoluminescent and thermochromic properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel smart solid-gel phase change materials (PCMs) with the photoluminescence and thermochromic properties were designed and fabricated in a simple way. In this work, luminescent mesoporous alumina (LMAa) was firstly prepared through pomelo peel bio-template method, which showed a better photoluminescence performance under the condition of 254 nm light. Next, LMAa and thermochromic pigment (TP) were evenly dispersed in the gelled capric–myristic–stearic fatty eutectic (CA-MA-SA) using magnetic stirring method, in which hydroxypropyl cellulose served as gelling agent, CA-MA-SA as good thermal storage PCM, LMAa as excellent fluorescent material, and TP as visible temperature change indicator. Some advanced techniques were introduced to characterize physical, chemical, and thermal properties of composite PCMs. Results showed that the CA-MA-SA/LMAa1.0 displays obvious luminescence under 254 nm UV light, excellent thermochromic ability from off-white to red as rising the ambient temperature from 35 to 45 °C, limited fluidity at 60 °C, suitable phase change temperature around 19.11 °C, high latent heat about 114.3 J g−1, and so on. The ideal shape stability, thermal, photoluminescent, and reversible thermochromic properties of composite PCMs had not only great application prospect in the field of thermal energy storage, but also brought convenience in practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CA:

Capric acid

CA-MA-SA:

Capric–myristic–stearic fatty eutectic

LMA:

Luminescent mesoporous alumina

Eu(NO3)3 :

Europium nitrate hexahydrate solution

LMAa:

LMA obtained using PP as template

LMAb:

LMA obtained using P123 as template

DSC:

Differential scanning calorimeter

SEM:

Scanning electron microscopy

MA:

Myristic acid

SA:

Stearic acid

HPC:

Hydroxypropyl cellulose

PP:

Pomelo peel

TP:

Thermochromic pigment

PCM:

Phase change material

TG:

Thermogravimeter

EDS:

Energy-dispersive spectrometer

FT-IR:

Fourier-transform infrared spectroscopy

ΔH :

Latent heat (kJ kg1)

References

  1. Ma L, Guo C, Ou R, Wang Q, Li L. Synthesis and characterization of the n-butyl palmitate as an organic phase change material. J Therm Anal Calorim. 2019;136:2033–9.

    Article  CAS  Google Scholar 

  2. Ma L, Guo C, Ou R, Sun L, Wang Q, Li L. Preparation and characterization of modified porous wood Flour/Lauric-Myristic acid eutectic mixture as a form-stable phase change material. Energ Fuel. 2018;32:5453–61.

    Article  CAS  Google Scholar 

  3. Liu F, Zhu J, Liu J, Ma B, Zhou W, Li R. Preparation and properties of capric-stearic acid/White Carbon Black composite for thermal storage in building envelope. Energ Build. 2018;158:1781–9.

    Article  Google Scholar 

  4. Kumar R, Vyas S, Dixit A. Fatty acids/1-dodecanol binary eutectic phase change materials for low temperature solar thermal applications: design, development and thermal analysis. Sol Energy. 2017;155:1373–9.

    Article  CAS  Google Scholar 

  5. Min X, Fang M, Huang Z, Liu YG, Huang Y, Wen R, Qian T, Wu X. Enhanced thermal properties of novel shape-stabilized PEG composite phase change materials with radial mesoporous silica sphere for thermal energy storage. Sci Rep. 2015; 5.

  6. Zhao Y, Zhang X, Xu X, Zhang S. Development, characterization and modification study of eutectic fatty alcohol for cold energy storage application. J Therm Anal Calorim. 2020; 122.

  7. Gao L, Sun X, Sun B, Che D, Li S, Liu Z. Preparation and thermal properties of palmitic acid/expanded graphite/carbon fiber composite phase change materials for thermal energy storage. J Therm Anal Calorim. 2020;141:25–35.

    Article  CAS  Google Scholar 

  8. Liang W, Zhang G, Sun H, Chen P, Zhu Z, Li A. Graphene-nickel/n-carboxylic acids composites as form-stable phase change materials for thermal energy storage. Sol Energ Mat Sol C. 2015;132:425–30.

    Article  CAS  Google Scholar 

  9. Chen C, Liu W, Wang Z, Peng K, Pan W, Xie Q. Novel form stable phase change materials based on the composites of polyethylene glycol/polymeric solid-solid phase change material. Sol Energ Mat Sol C. 2015;134:80–8.

    Article  CAS  Google Scholar 

  10. Akhiani AR, Mehrali M, Tahan Latibari S, Mehrali M, Mahlia TMI, Sadeghinezhad E, Metselaar HSC. One-step preparation of form-stable phase change material through self-assembly of fatty acid and graphene. J Phys Chem C. 2015;119:22787–96.

    Article  CAS  Google Scholar 

  11. Wu S, Ma X, Peng D, Bi Y. The phase change property of lauric acid confined in carbon nanotubes as nano-encapsulated phase change materials. J Therm Anal Calorim. 2019;136:2353–61.

    Article  CAS  Google Scholar 

  12. Wang Y, Wu B, Zhao Y, Liu Q, Lei J. Study on a novel solid-solid phase change materials: solvent-free preparation, thermal properties and phase separation behaviors. J Therm Anal Calorim. 2020;141:1305–15.

    Article  CAS  Google Scholar 

  13. Song S, Dong L, Zhang Y, Chen S, Li Q, Guo Y, et al. Lauric acid/intercalated kaolinite as form-stable phase change material for thermal energy storage. Energy. 2014;76:385–9.

    Article  CAS  Google Scholar 

  14. Liang J, Zhimeng L, Ye Y, Yanjun W, Jingxin L, Changlin Z. Fabrication and characterization of fatty acid/wood-flour composites as novel form-stable phase change materials for thermal energy storage. Energ Build. 2018;171:88–99.

    Article  Google Scholar 

  15. Nazir H, Batool M, Ali M, Kannan AM. Fatty acids based eutectic phase change system for thermal energy storage applications. Appl Therm Eng. 2018;142:466–75.

    Article  CAS  Google Scholar 

  16. Jiang L, Lei Y, Liu Q, Wang Y, Zhao Y, Lei J. Facile preparation of polyethylene glycol/wood-flour composites as form-stable phase change materials for thermal energy storage. J Therm Anal Calorim. 2020;139:137–46.

    Article  CAS  Google Scholar 

  17. Wei H, Xie X, Li X, Lin X. Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material. Appl Energ. 2016;178:616–23.

    Article  CAS  Google Scholar 

  18. Ma L, Wang Q, Li L. Delignified wood/capric acid-palmitic acid mixture stable-form phase change material for thermal storage. Sol Energ Mat Sol C. 2019;194:215–21.

    Article  CAS  Google Scholar 

  19. Ke H. Investigation of the effects of nano-graphite on morphological structure and thermal performances of fatty acid ternary eutectics/polyacrylonitrile/nano-graphite form-stable phase change composite fibrous membranes for thermal energy storage. Sol Energy. 2018;173:1197–206.

    Article  CAS  Google Scholar 

  20. Qian T, Li J, Min X, Deng Y, Guan W, Ma H. Polyethylene glycol/mesoporous calcium silicate shape-stabilized composite phase change material: Preparation, characterization, and adjustable thermal property. Energy. 2015;82:333–40.

    Article  CAS  Google Scholar 

  21. Xiao Q, Zhang M, Fan J, Li L, Xu T, Yuan W. Thermal conductivity enhancement of hydrated salt phase change materials employing copper foam as the supporting material. Sol Energ Mat Sol C. 2019;199:91–8.

    Article  CAS  Google Scholar 

  22. Wang H, Luo J, Yang Y, Zhao L, Song G, Tang G. Fabrication and characterization of microcapsulated phase change materials with an additional function of thermochromic performance. Sol Energy. 2016;139:591–8.

    Article  CAS  Google Scholar 

  23. Zhang Y, Jiang Z, Zhang Z, Ding Y, Yu Q, Li Y. Polysaccharide assisted microencapsulation for volatile phase change materials with a fluorescent retention indicator. Chem Eng J. 2019;359:1234–43.

    Article  CAS  Google Scholar 

  24. Bayés-García L, Ventolà L, Cordobilla R, Benages R, Calvet T, Cuevas-Diarte MA. Phase change materials (PCM) microcapsules with different shell compositions: preparation, characterization and thermal stability. Sol Energ Mat Sol C. 2010;94:1235–40.

    Article  CAS  Google Scholar 

  25. Rao Z, Wang S, Peng F, Zhang W, Zhang Y. Dissipative particle dynamics investigation of microencapsulated thermal energy storage phase change materials. Energy. 2012;44:805–12.

    Article  CAS  Google Scholar 

  26. Huo X, Li W, Wang Y, Han N, Wang J, Wang N, Zhang X. Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation. Carbohyd Polym. 2018;200:602–10.

    Article  CAS  Google Scholar 

  27. Yang Y, Ren Y, Li W, Cai X. Preparation and characterization of novel form stable phase change materials based on stearic acid (SA)/hollow glass microsphere (HGS) with low supercooling. J Therm Anal Calorim. 2019;136:1905–13.

    Article  CAS  Google Scholar 

  28. Saeed RM, Schlegel JP, Castano C, Sawafta R. Preparation and enhanced thermal performance of novel (solid to gel) form-stable eutectic PCM modified by nano-graphene platelets. J Energy Storage. 2018;15:91–102.

    Article  Google Scholar 

  29. Geng X, Li W, Wang Y, Lu J, Wang J, Wang N, Li J, Zhang X. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing. Appl Energ. 2018;217:281–94.

    Article  CAS  Google Scholar 

  30. Chen X, Gao H, Yang M, Xing L, Dong W, Li A, Zheng H, Wang G. Smart integration of carbon quantum dots in metal-organic frameworks for fluorescence-functionalized phase change materials. Energy Storage Mater. 2019;18:349–55.

    Article  Google Scholar 

  31. Yang H, Chao W, Wang S, Yu Q, Cao G, Yang T, Liu F, Di X, Li J, Wang C, Li G. Self-luminous wood composite for both thermal and light energy storage. Energy Storage Mater. 2019;18:15–22.

    Article  CAS  Google Scholar 

  32. Li L, Wang G, Guo C. Influence of intumescent flame retardant on thermal and flame retardancy of eutectic mixed paraffin/polypropylene form-stable phase change materials. Appl Energ. 2016;162:428–34.

    Article  CAS  Google Scholar 

  33. Huang Y, Cheng Y, Zhao R, Cheng W. A high heat storage capacity form-stable composite phase change material with enhanced flame retardancy. Appl Energ. 2020;262:114536.

    Article  CAS  Google Scholar 

  34. Geng X, Li W, Yin Q, Wang Y, Han N, Wang N, Bian J, Wang j, Zhang X, . Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity. Energy. 2018;159:857–69.

    Article  CAS  Google Scholar 

  35. Li X, Wang Y, Wang B, Feng X, Mao Z, Sui X. Antibacterial phase change microcapsules obtained with lignin as the Pickering stabilizer and the reducing agent for silver. Int J Biol Macromol. 2020;144:624–31.

    Article  CAS  PubMed  Google Scholar 

  36. He Y, He J, Zhang H, Liu Y, Lei B. Luminescent properties and energy transfer of luminescent carbon dots assembled mesoporous Al2O3: Eu3+ co-doped materials for temperature sensing. J Coll Interf Sci. 2017;496:8–15.

    Article  CAS  Google Scholar 

  37. Wang J, Zhou W, Hu W, Zhou L, Wang S, Zhang S. Collagen/silk fibroin bi-template induced biomimetic bone-like substitutes. J Biomed Mater Res. 2011;99:327–34.

    Article  CAS  Google Scholar 

  38. Liu Y, Zhang X, Wu B, Zhao H, Zhang W, Shan C, Yang J, Liu Q. Preparation Of ZnO/Co3O4 hollow microsphere by pollen-biological template and its application in photocatalytic degradation. ChemistrySelect. 2019;4:12445–54.

    Article  CAS  Google Scholar 

  39. Sun S, Xiao Y, He L, Tong Y, Liu D, Zhang J. Zr-based metal-organic framework films grown on bio-template for photoelectrocatalysis. ChemistrySelect. 2020;5:13855–61.

    Article  CAS  Google Scholar 

  40. Nowicki P, Kazmierczak-Razna J, Pietrzak R. Physicochemical and adsorption properties of carbonaceous sorbents prepared by activation of tropical fruit skins with potassium carbonate. Mater Des. 2016;90:579–85.

    Article  CAS  Google Scholar 

  41. Qu G, Jia S, Wang H, Cao F, Li L, Qing C, Sun D, Wang B, Tang Y, Wang J. Asymmetric supercapacitor based on porous N-doped carbon derived from pomelo peel and NiO arrays. Acs Appl Mater Inter. 2016;8:20822–30.

    Article  CAS  Google Scholar 

  42. Zuo P, Duan J, Fan H, Qu S, Shen W. Facile synthesis high nitrogen-doped porous carbon nanosheet from pomelo peel and as catalyst support for nitrobenzene hydrogenation. Appl Surf Sci. 2018;435:1020–8.

    Article  CAS  Google Scholar 

  43. Wang H, Wu Z, Meng F, Ma D, Huang X, Wang L, Zhang X. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. Chemsuschem. 2013;6:56–60.

    Article  CAS  PubMed  Google Scholar 

  44. Lin Z, Ma L, Wang Q, Li L. Preparation and characterization of capric-myristic-stearic acid eutectic/mesoporous carbonized pomelo peel as a novel shape-stable composite phase change materials. Mater Res Exp 2019; 6.

  45. Cai Y, Liu M, Song X, Zhang J, Wei Q, Zhang L. A form-stable phase change material made with a cellulose acetate nanofibrous mat from bicomponent electrospinning and incorporated capric-myristic-stearic acid ternary eutectic mixture for thermal energy storage/retrieval. RSC Adv. 2015;84:245–51.

    Google Scholar 

  46. Cai Y, Hou X, Wang W, Liu M, Zhang J, Qiao H, Huang F, Wei Q. Effects of SiO2 nanoparticles on structure and property of form-stable phase change materials made of cellulose acetate phase inversion membrane absorbed with capric-myristic-stearic acid ternary eutectic mixture. Thermochim Acta. 2017;653:49–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Research and Development Program in Key Areas of Guangdong Province (2020B0202010008), Guangdong Basic and Applied Basic Research Foundation (2020A1515011411), the National Natural Science Foundation of China (31570572 and 32071694), Key Research special Projects in Universities in Guangdong Province (2019KZDZX2002), and Guangzhou Science and Technology Project (201905010005) and the Project of Key Disciplines of Forestry Engineering of Bureau of Guangzhou Municipality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Gan, Y. & Li, L. Preparation and characterization of smart (solid–gel) shape-stable phase change materials with photoluminescent and thermochromic properties. J Therm Anal Calorim 147, 7171–7181 (2022). https://doi.org/10.1007/s10973-021-11013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11013-9

Keywords

Navigation