Skip to main content
Log in

Thermal performance of mortars/concretes containing analcime

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of this study is to achieve a synergy with positive properties of zeolites such as thermal performance and pozzolanic admixture. For this aim, in the study, analcime and clinoptilolite, the two different natural zeolite minerals, were used as pozzolanic replacement material for blended cements. The replacement ratios with Portland cement of zeolites were 0, 10, 30 and 50%. The clinoptilolite which is widely used in the market was used in comparison with zeolite for the determination of similar properties for analcime. Mortars/concretes containing analcime and clinoptilolite blended cements were produced. In the study, (1) physical, chemical, mechanical, mineralogical, petrographic, thermal properties and pozzolanic activities for analcime and clinoptilolite, (2) conformity tests of blended cements, and (3) strength and the thermal performance for mortars/concretes containing blended cements were determined. The test results have been compared among themselves and with each other. According to the test results, without compromising in terms of strengths of mortars/concretes due to pozzolanic activity, it has been determined that thermal performance of the mortars/concretes containing analcime and clinoptilolite blended cements could be improved. Also, it has been concluded that the analcime has showed similar properties to clinoptilolite in terms of its thermal performance and strength. In some cases, due to these similar properties, analcime may be an alternative pozzolanic additive to clinoptilolite which is commonly used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abergel T, Dean B, Dulac J, Hamilton I. 2018 Global Status Report, Towards a zero-emission, efficient and resilient buildings and construction sector. IEA, Paris, France; 2018. [online] Available at: https://www.iea.org/reports/2018-global-status-report

  2. Ndiaye K, Ginestet S, Cyr M. Thermal energy storage based on cementitious materials: a review. AIMS Energy. 2018;6(1):97–120.

    Article  CAS  Google Scholar 

  3. Leong KC, Liu Y. Numerical modeling of combined heat and mass transfer in the adsorbent bed of a zeolite/water cooling system. Appl Therm Eng. 2004;24(16):2359–74. https://doi.org/10.1016/j.applthermaleng.2004.02.014.

    Article  CAS  Google Scholar 

  4. Hongois S, Kuznik F, Stevens P. Development and characterization of a new MgSO4—zeolite composite for long-term thermal energy storage. Sol Energy Mater Sol Cells. 2011;95(7):1831–7. https://doi.org/10.1016/j.solmat.2011.01.050.

    Article  CAS  Google Scholar 

  5. Duquesne M, Toutain J, Sempey A, Ginestet S, Palomo del Barrio E. Modeling of a nonlinear thermochemical energy storage by adsorption on zeolites. Appl Therm Eng. 2014;71(1):469–80. https://doi.org/10.1016/j.applthermaleng.2014.07.002.

    Article  CAS  Google Scholar 

  6. Blanco Varela MT, Martinez Ramirez S, Erena I, Gener M, Carmona P. Characterization and pozzolanicity of zeolitic rocks from two Cuban deposits. Appl Clay Sci. 2006;33(2):149–59. https://doi.org/10.1016/j.clay.2006.04.006.

    Article  CAS  Google Scholar 

  7. Chan SYN, Ji X. Comparative study of the initial surface absorption and chloride diffusion of high-performance zeolite, silica fume and PFA concretes. Cement Concr Compos. 1999;21(4):293–300. https://doi.org/10.1016/S0958-9465(99)00010-4.

    Article  CAS  Google Scholar 

  8. Ortega EA, Cheeseman C, Knight J, Loizidou M. Properties of alkali-activated clinoptilolite. Cem Concr Res. 2000;30(10):1641–6. https://doi.org/10.1016/S0008-8846(00)00331-8.

    Article  CAS  Google Scholar 

  9. Gervais C, Ouki SK. Performance study of cementitious systems containing zeolite and silica fume: effects of four metal nitrates on the setting time, strength and leaching characteristics. J Hazard Mater. 2002;93(2):187–200. https://doi.org/10.1016/S0304-3894(02)00005-5.

    Article  CAS  PubMed  Google Scholar 

  10. Mertens G, Snellings R, Van Balen K, Bicer-Simsir B, Verlooy P, Elsen J. Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cem Concr Res. 2009;39(3):233–40. https://doi.org/10.1016/j.cemconres.2008.11.008.

    Article  CAS  Google Scholar 

  11. Najimi M, Sobhani J, Ahmadi B, Shekarchi M. An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Constr Build Mater. 2012;35:1023–33. https://doi.org/10.1016/j.conbuildmat.2012.04.038.

    Article  Google Scholar 

  12. Worrell E, Martin N, Price L. Potentials for energy efficiency improvement in the US cement industry. Energy. 2000;25(12):1189–214. https://doi.org/10.1016/S0360-5442(00)00042-6.

    Article  CAS  Google Scholar 

  13. Hasanbeigi A, Price L, Lin E. Emerging energy–efficiency and CO2 emission–reduction technologies for cement and concrete production: a technical review. Renew Sustain Energy Rev. 2012;16(8):6220–38. https://doi.org/10.1016/j.rser.2012.07.019.

    Article  CAS  Google Scholar 

  14. Uzal B, Turanlı L. Blended cements containing high volume of natural zeolites: Properties, hydration and paste microstructure. Cement Concr Compos. 2012;34(1):101–9. https://doi.org/10.1016/j.cemconcomp.2011.08.009.

    Article  CAS  Google Scholar 

  15. Ahmadi B, Shekarchi M. Use of natural zeolite as a supplementary cementitious material. Cement Concr Compos. 2010;32(2):134–41. https://doi.org/10.1016/j.cemconcomp.2009.10.006.

    Article  CAS  Google Scholar 

  16. Perraki T, Kontori E, Tsivilis S, Kakali G. The effect of zeolite on the properties and hydration of blended cements. Cement Concrete Compos. 2010;32(2):128–33. https://doi.org/10.1016/j.cemconcomp.2009.10.004.

    Article  CAS  Google Scholar 

  17. Senhadji Y, Escadeillas G, Khelafi H, Mouli M, Benosman AS. Evaluation of natural pozzolan for use as supplementary cementitious material. Eur J Environ Civ Eng. 2012;16(1):77–96. https://doi.org/10.1080/19648189.2012.667692.

    Article  Google Scholar 

  18. Bilim C. Properties of cement mortars containing clinoptilolite as a supplementary cementitious material. Constr Build Mater. 2011;25(8):3175–80. https://doi.org/10.1016/j.conbuildmat.2011.02.006.

    Article  Google Scholar 

  19. Özen S, Göncüoğlu MC, Liguori B, de Gennaro B, Cappelletti P, Gatta GD, Iucolano F, Collella C. A comprehensive evaluation of sedimentary zeolites from Turkey as pozzolanic addition of cement- and lime-based binders. Constr Build Mater. 2016;105:46–61. https://doi.org/10.1016/j.conbuildmat.2015.12.055.

    Article  CAS  Google Scholar 

  20. Nizami AS, Ouda OKM, Rehan M, El-Maghraby AMO, Gardy J, Hassanpour A, Kumar S, Ismail IMI. The potential of Saudi Arabian natural zeolites in energy recovery technologies. Energy. 2016;108:162–71. https://doi.org/10.1016/j.energy.2015.07.030.

    Article  CAS  Google Scholar 

  21. Zhou B, Shi J, Chen Z. Experimental study on moisture migration process of zeolite-based composite humidity control material. Appl Therm Eng. 2018;128:604–13. https://doi.org/10.1016/j.applthermaleng.2017.08.138.

    Article  CAS  Google Scholar 

  22. Özrahat E, Ünalan S. Thermal performance of a concrete column as a sensible thermal energy storage medium and a heater. Renew Energy. 2017;111:561–79. https://doi.org/10.1016/j.renene.2017.04.046.

    Article  Google Scholar 

  23. Hoivik N, Greiner C, Barragan J, Iniesta AC, Skeie G, Bergan P, Blanco-Rodriguez P, Calvet N. Long-term performance results of concrete-based modular thermal energy storage system. J Energy Storage. 2019;24: 100735. https://doi.org/10.1016/j.est.2019.04.009.

    Article  Google Scholar 

  24. Başyiğit C. The effect of zeolite rate on the thermo-mechanical properties of concrete. Int J Phys Sci. 2010;5(7):968–71. https://doi.org/10.5897/IJPS.9000565.

    Article  Google Scholar 

  25. Karakurt C, Topçu IB. Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete. Constr Build Mater. 2011;25(4):1789–95. https://doi.org/10.1016/j.conbuildmat.2010.11.087.

    Article  Google Scholar 

  26. Albayrak M, Yörükoğlu A, Karahan S, Atlıhan S, Aruntaş HY, Girgin I. Influence of zeolite additive on properties of autoclaved aerated concrete. Build Environ. 2007;42(9):3161–5. https://doi.org/10.1016/j.buildenv.2006.08.003.

    Article  Google Scholar 

  27. Vejmelková E, Koňáková D, Kulovana T, Keppert M, Žumár J, Rovnaníková P, Keršner Z, Sedlmajer M, Černý R. Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance. Cement Concrete Compos. 2015;55:259–67. https://doi.org/10.1016/j.cemconcomp.2014.09.013.

    Article  CAS  Google Scholar 

  28. Jänchen J, Herzog TH, Thrun E. Natural zeolites in thermal adsorption storage and building materials for solar energy utilization in houses. In: Proceedings of insert conference abbreviation, SASEC2015, third Southern African Solar Energy Conference, Kruger National Park, South Africa. 2015; pp. 336–340. http://hdl.handle.net/2263/49532

  29. Akgün Y. A comparative study: blended cements containing analcime and clinoptilolite . Süleyman Demirel Univ J Nat Appl Sci. 2019;23(3):748–58.

    Google Scholar 

  30. CEN EN 197–1 Cement Part 1: Composition, specification and conformity criteria for common cements. European Committee for Standardization. Brussels, Belgium; 2012.

  31. CEN EN 196–1 Methods of testing cement—Part 1: Determination of strength. European Committee for Standardization. Brussels, Belgium; 2016.

  32. TSE TS 25 Natural pozzolan (Trass) for use in cement and concrete—Definitions, requirements and conformity criteria. Turkish Standard Institute. Ankara, Turkey; 2011.

  33. CEN EN 934–2 Admixtures for concrete, mortar and grout—Part 2: Concrete admixtures; Definitions, requirements, conformity, marking and labelling. European Committee for Standardization. Brussels, Belgium; 2013.

  34. CEN EN 196–6 Methods of testing cement—Part 6: Determination of fineness. European Committee for Standardization. Brussels, Belgium; 2010.

  35. ASTM C 311 Test methods for sampling and testing fly ash or natural pozzolans for use as a mineral admixture in portland cement concrete. American Society for Testing and Materials; 2005.

  36. CEN EN 196–3 Methods of testing cement—Part 3: Determination of setting times and soundness, European Committee for Standardization. Brussels, Belgium; 2017.

  37. CEN EN 12390–2 Testing hardened concrete—Part 2: Making and curing specimens for strength tests. European Committee for Standardization. Brussels, Belgium; 2010.

  38. ACI ACI 211.1–91 Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete. American Concrete Institute. Farmington Hills, MI, USA; 2009.

  39. CEN EN ISO 8990 Thermal insulation—Determination of steady-State thermal transmission properties-Calibrated and guarded hot box. European Committee for Standardization. Brussels, Belgium; 1989.

  40. CEN EN ISO 6946 Building components and building elements—Thermal resistance and thermal transmittance—Calculation methods. European Committee for Standardization. Brussels, Belgium; 2017.

  41. DIN DIN 51046 Testing of ceramic materials; Determination of thermal conductivity up to 1600 °C according to the hot wire method, thermal conductivity up to 2 WK −1m−1. The German Institute for Standardization. Berlin, Germany; 1976.

  42. CEN EN 993–15, Methods of test for dense shaped refractory products—Determination of thermal conductivity by the hot-wire (parallel) method. European Committee for Standardization. Brussels, Belgium; 2006.

  43. Devecioğlu AG, Biçer Y. Investigation of thermal properties of the expanded clay aggregate concrete. Dicle Univ J Eng Fac. 2012;3(2):75–81.

    Google Scholar 

  44. Incropera FP, De Witt DP, Bergman TL, Lavine AS. Fundamentals of heat and mass transfer. 6th ed. New Jersey: Wiley; 2007.

    Google Scholar 

  45. CEN EN 12620 Aggregates for concrete. European Committee for Standardization. Brussels, Belgium; 2009.

  46. Snellings R, Machiels L, Mertens G, Elsen J. Rietveld Refinement strategy for quantitative phase analysis of partially amorphous zeolitized tuffaceous rocks. Geol Belg. 2010;133:183–96.

    Google Scholar 

  47. Güngör D, Özen S. Development and characterization of clinoptilolite-, mordenite-, and analcime-based geopolymers: a comparative study. Case Stud Constr Mater. 2021;15:e00576. https://doi.org/10.1016/j.cscm.2021.e00576.

    Article  Google Scholar 

  48. Sakızcı M. Investigation of thermal and structural properties of natural and Ion-exchanged analcime. Anadolu Univ J Sci Technol A Appl Sci Eng. 2016;17(4):724–34.

    Google Scholar 

  49. Inglezakis VJ, Zorpas AA. Handbook of natural zeolites. Sharjah: Bentham Science Publishers; 2012. https://doi.org/10.2174/97816080526151120101.

    Book  Google Scholar 

  50. Küçükyıldırım E, Uzal B. Characteristics of calcined natural zeolites for use in high- performance pozzolan blended cements. Constr Build Mater. 2014;73:229–34. https://doi.org/10.1016/j.conbuildmat.2014.09.081.

    Article  Google Scholar 

  51. Oz A, Turkmen I. Relationship between destructive and non-destructive method of concretes containing natural zeolite and blast furnace slag. Sci Res Essays. 2010;5(18):2742–51.

    Google Scholar 

  52. Ozaydin S, Kocer G, Hepbasli A. Natural zeolites in energy applications. Energy Sources Part A Recov Utili Environ Effects. 2006;28:1425–31. https://doi.org/10.1080/15567240500400804.

    Article  CAS  Google Scholar 

  53. Dakhli Z, Chaffar K, Lafhaj Z. The effect of phase change materials on the physical, thermal and mechanical properties of cement. Sci. 2019;1(1):27. https://doi.org/10.3390/sci1010027.

    Article  Google Scholar 

  54. Célestin JH, Fall M. Thermal conductivity of cemented paste backfill material and factors affecting it. Int J Min Reclam Environ. 2009;23(4):274–90. https://doi.org/10.1080/17480930902731943.

    Article  Google Scholar 

  55. Duan P, Song L, Yan C, Ren D, Li Z. Novel thermal insulating and lightweight composites from metakaolin geopolymer and polystyrene particles. Ceram Int. 2017;43(6):5115–20. https://doi.org/10.1016/j.ceramint.2017.01.025.

    Article  CAS  Google Scholar 

  56. Bentz DP, Peltz MA, Duran-Herrera A, Valdez P, Juarez CA. Thermal properties of high-volume fly ash mortars and concretes. J Build Phys. 2011;34(3):263–75. https://doi.org/10.1177/1744259110376613.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Scientific Research Project Unit of Ordu University under Project No: BY-1736. The author would like to thanks to Laboratories of Dicle University, Laboratories of General Directorate of Mineral Research and Explorations and Gördes Zeolite, Votorantim Cement, Altaş Ready-Mixed Concrete companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasemin Akgün.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akgün, Y., Yılmaz, T. Thermal performance of mortars/concretes containing analcime. J Therm Anal Calorim 146, 47–60 (2021). https://doi.org/10.1007/s10973-021-11012-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-11012-w

Keywords

Navigation