Skip to main content
Log in

Bio-based materials for fire-retardant application in construction products: a review

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript


Bio-based materials are showing great potential to be widely used in construction industry, while reducing fire risk and improving fire resistance of these alternatives also become a major concern due to their inherent flammability. Initially, this review introduces three common bio-based construction materials, including biopolymer-based materials, wood-based materials, and crop-based materials, and their fire behaviors in flaming and smoldering combustion scenarios, accompanied with some typical flame-retardant mechanisms. Sequentially, the recent achievements in improving fire resistance are mainly exhibited in detail for each kind of bio-based materials. There are numerous reports for biopolymer-based flame-retardant materials with mature flame-retardant methodology. With regard to wood-based flame-retardant materials, different criteria and methodologies are needed to evaluate the flame-retardant properties. Meanwhile, in the case of crop-based insulation materials is essential to carefully consider the fire behavior, both in flaming and smoldering combustions, and not only focus on their thermal performance. In the final section, based on the requirements of fire safety and practicality for construction materials, bio-based alternatives with excellent good fire resistance and practical performance are summarized to be a promising way to meet future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2017, reproduced permission from Elsevier Ltd

Fig. 2

Copyright 2017, reproduced permission from Elsevier B. V

Fig. 3

Copyright 2019. Reproduced with permission from American Chemical Society

Fig. 4

Copyright 2020. Reproduced with permission from American Chemical Society

Fig. 5

Copyright 2018. Reproduced with permission from Elsevier Ltd; (2) scheme of preparation for Ni-PO derived from metal–organic framework (MOF) [42], Copyright 2019. Reproduced with permission from American Chemical Society

Fig. 6

Copyright 2020. Reproduced with permission from Elsevier Ltd

Fig. 7

Copyright 2010. Reproduced with permission from American Chemical Society; (2) PBS/APP + MA/GNS ratio: (a) 100/0/0, (b) 80/20/0, (c)80/19.5/0.5, (d) 80/19.0/1.0, (e) 80/18.0/2.0 [51], Copyright 2011. Reproduced with permission from American Chemical Society

Fig. 8

Copyright 2018. Reproduced with permission from American Chemical Society

Fig. 9

Copyright 2019. Reproduced with permission from Elsevier B.V

Fig. 10

Copyright 2018. Reproduced with permission from Elsevier Ltd

Fig. 11

Copyright 2020. Reproduced with permission from John Wiley & Sons Ltd

Fig. 12

Copyright 2020, Reproduced with permission from Elsevier Ltd

Fig. 13

Copyright 2020. Reproduced with permission from Elsevier Ltd. (2) corn stalk/ Magnesium Phosphate Cement [133], Copyright 2018. Reproduced with permission from Elsevier B.V. (3) (a) corn cob/ bio-binders [134], Copyright 2019. Reproduced with permission from Elsevier Ltd. (b) corn cob/ wood glue [135], Copyright 2011. Reproduced with permission from Elsevier B.V. (4) corn pith/ epoxy system [136], Copyright 2016. Reproduced with permission from Elsevier Ltd

Fig. 14

Copyright 2015. Reproduced with permission from Elsevier Ltd. (2) infrared images for (a) corn pith/ alginate and (b) corn pith/ alginate/ boric acid in smoldering test, (3) temperature evolutions of thermocouples for (a) corn pith/ alginate and (b) corn pith/ alginate/ boric acid in smoldering test [127], Copyright 2017. Reproduced with permission from Elsevier Ltd

Fig. 15


Similar content being viewed by others



Sustainable construction materials


Circular Economy


Sustainable management


Construction Demolition Waste


European Union


United States


Environmental Protection Agency


Intumescent flame retardants




Polybutylene succinate






Ammonium polyphosphate


Organically modified montmorillonite


Triallyl cyanurate




Metal–organic framework


Ionic liquid tetrabutylphosphonium tetrafluoroborate


Multi-walled carbon nanotube




Poly (3-hydroxyvalerate)










Furfuryl alcohol


Ammonium dihydrogen phosphate


Hydroxyl-terminated polydimethylsiloxane




Wood-plastic composite


Extruded polystyrene foam


Time to ignition

Tig :

Ignition temperature


Heat release rate


Peak to heat release rate


Mass loss rate


Total smoke product


Total heat release


Effective heat of combustion


Heat release capacity

Tis :

Smoldering initiation temperature

Sp :

Propagation speed of the smoldering front

tig :

Ignition times


Fire growth index


Average combustion velocity


Thermal conductivity


Thermal diffusivity


Scanning electron microscope


Lateral ignition and flame spread test


Cone Calorimeter test


Heat-transfer rate inducing system


Thermogravimetric analysis


Limit oxygen index


  1. Pavan, Sukhdev; Steven S. Towards a Green Economy: pathways to sustainable Development and Poverty Eradication. St-Martin-Bellevue, France; 2011.

  2. Davies PJ, Emmitt S, Firth SK. Delivering improved initial embodied energy efficiency during construction. Sustain Cities Soc. 2015;14:267–79.

    Article  Google Scholar 

  3. Honic M, Kovacic I, Rechberger H. Improving the recycling potential of buildings through Material Passports (MP): An Austrian case study. J Clean Prod. 2019;217:787–97.

    Article  Google Scholar 

  4. Gontia P, Nägeli C, Rosado L, Kalmykova Y, Österbring M. Material-intensity database of residential buildings: a case-study of Sweden in the international context. Resour Conserv Recycl. 2018;130:228–39.

    Article  Google Scholar 

  5. Zabalza Bribián I, Valero Capilla A, Aranda UA. Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ. 2011;46:1133–40.

    Article  Google Scholar 

  6. Liang J, Qiu Y, James T, Ruddell BL, Dalrymple M, Earl S, et al. Do energy retrofits work? Evidence from commercial and residential buildings in Phoenix. J Environ Econ Manage. 2018;92:726–43.

    Article  Google Scholar 

  7. MOHURD/China. Assessment guidelines for green building materials. Beijing, China; 2015.

  8. Parliament. CC to the E. A new Circular Economy Action Plan For a cleaner and more competitive Europe. Bruseels, Belgium; 2020.

  9. Environmental Protection Agency/U.S. EPA Sustainable Materials Management Program Strategic Plan. Washington, U.S.; 2015. program-strategic-plan-fiscal-years-2017-2022.

  10. Industrial Cooperation/EU-Japan Centre. Sustainable Building and Construction Sector in Japan and analysis of opportunities for european firms. Tokyo, Japan; 2015. 61OpX56ppM8pEcmY/mtime:1431943776/sites/default/files/sustainable-building-construction-in-japan-presentation.pdf.

  11. George A, Sanjay MR, Srisuk R, Parameswaranpillai J, Siengchin S. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int J Biol Macromol. 2020;154:329–38.

    Article  CAS  PubMed  Google Scholar 

  12. Yang Y, Wang D-Y, Haurie L, Liu Z, Zhang L. Combination of corn pith fiber and biobased flame retardant: a novel method toward flame retardancy, thermal stability, and mechanical properties of polylactide. Polymers (Basel). 2021;13:1562.

    Article  CAS  PubMed Central  Google Scholar 

  13. Palumbo M, Avellaneda J, Lacasta AM. Availability of crop by-products in Spain: New raw materials for natural thermal insulation. Resour Conserv Recycl. 2015;99:1–6.

    Article  Google Scholar 

  14. Jones D. Introduction to the performance of bio-based building materials. In: Dennis J, Christian B, editors. Perform Bio-based Build Mater. Woodhead Publishing; 2017. p. 1–19.

  15. Kindelan M, Williams FA. Radiant ignition of a combustible solid with gas-phase exothermicity. Acta Astronaut. 1975;2:955–79.

    Article  Google Scholar 

  16. Levan S. Chemistry of Fire Retardancy. In: Roger R, editor. Chem Solid Wood. American C. 1984. p. 531–74.

  17. Zanoni MAB, Torero JL, Gerhard JI. Delineating and explaining the limits of self-sustained smouldering combustion. Combust Flame. 2019;201:78–92.

    Article  CAS  Google Scholar 

  18. Torero JL, Gerhard JI, Martins MF, Zanoni MAB, Rashwan TL, Brown JK. Processes defining smouldering combustion: Integrated review and synthesis. Prog Energy Combust Sci. 2020;81:100869.

    Article  Google Scholar 

  19. Della-Giustina DE. Fire Safety Management Handbook. In: Della-Giustina DE, editor. Fire Saf Manag Handb. Third Edit. New York: CRC Press; 2014. p. 11–8.

  20. Morgan J, Hurley; Guillermo R. SFPE Handbook of Fire Protection Engineering. In: Hurley MJ, editor. SFPE Handb Fire Prot Eng Fifth Ed. Fifth Edit. New York: Springer, New York; 2016. p. 581–606.

  21. Shui-Yu L, Ian H. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci. 2002;27:1661–712.

    Article  Google Scholar 

  22. Wang X, Kalali EN, Wan JT, Wang DY. Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci. 2017;69:22–46.

    Article  CAS  Google Scholar 

  23. Pacheco-Torgal F. Introduction to biopolymers and biotech admixtures for eco-efficient construction materials. In: Fernando, Pacheco-Torgal; Volodymyr, Ivanov; Henk J, editor. Biopolym Biotech Admixtures Eco-Efficient Constr Mater. Woodhead Publishing; 2016. p. 1–10.

  24. Noreen A, Zia KM, Zuber M, Tabasum S, Zahoor AF. Bio-based polyurethane: an efficient and environment friendly coating systems: a review. Prog Org Coatings. 2016;91:25–32.

    Article  CAS  Google Scholar 

  25. Rydz J, Sikorska W, Musioł M, Zawidlak-Węgrzyńska B, Duale K. Sustainable future alternative: (bio)degradable polymers for the environment. Encycl Renew Sustain Mater 2020. p. 274–84.

  26. Durante M, Formisano A, Boccarusso L, Langella A, Carrino L. Creep behaviour of polylactic acid reinforced by woven hemp fabric. Compos Part B Eng. 2017;124:16–22.

    Article  CAS  Google Scholar 

  27. Murariu M, Dubois P. PLA composites: from production to properties. Adv Drug Deliv Rev. 2016;107:17–46.

    Article  CAS  PubMed  Google Scholar 

  28. Gao D, Wen X, Guan Y, Czerwonko W, Li Y, Gao Y, et al. Flame retardant effect and mechanism of nanosized NiO as synergist in PLA/APP/CSi-MCA composites. Compos Commun. 2020;17:170–6.

    Article  CAS  Google Scholar 

  29. Li Z, Fernández Expósito D, Jiménez González A, Wang D-Y. Natural halloysite nanotube based functionalized nanohybrid assembled via phosphorus-containing slow release method: a highly efficient way to impart flame retardancy to polylactide. Eur Polym J. 2017;93:458–70.

    Article  CAS  Google Scholar 

  30. Feng J, Sun Y, Song P, Lei W, Wu Q, Liu L, et al. Fire-resistant, strong, and green polymer nanocomposites based on poly(lactic acid) and core-shell nanofibrous flame retardants. ACS Sustain Chem Eng. 2017;5:7894–904.

    Article  CAS  Google Scholar 

  31. Yang Y, Haurie L, Wen J, Zhang S, Ollivier A, Wang DY. Effect of oxidized wood flour as functional filler on the mechanical, thermal and flame-retardant properties of polylactide biocomposites. Ind Crops Prod. 2019;130:301–9.

    Article  CAS  Google Scholar 

  32. Jin X, Cui S, Sun S, Gu X, Li H, Sun J, et al. The preparation of an intumescent flame retardant by ion exchange and its application in polylactic acid. ACS Appl Polym Mater. 2019;1:755–64.

    Article  CAS  Google Scholar 

  33. Yang YX, Haurie L, Zhang J, Zhang X-Q, Wang R, Wang D-Y. Effect of bio-based phytate (PA-THAM) on the flame retardant and mechanical properties of polylactide (PLA). eXpress Polym Lett. 2020;14:705–16.

  34. Jiang P, Zhang S, Bourbigot S, Chen Z, Duquesne S, Casetta M. Surface grafting of sepiolite with a phosphaphenanthrene derivative and its flame-retardant mechanism on PLA nanocomposites. Polym Degrad Stab. 2019;165:68–79.

    Article  CAS  Google Scholar 

  35. Xiong Z, Zhang Y, Du X, Song P, Fang Z. Green and scalable fabrication of core-shell biobased flame retardants for reducing flammability of polylactic acid. ACS Sustain Chem Eng. 2019;7:8954–63.

    Article  CAS  Google Scholar 

  36. Zhang Y, Xiong Z, Ge H, Ni L, Zhang T, Huo S, et al. Core-shell bioderived flame retardants based on chitosan/alginate coated ammonia polyphosphate for enhancing flame retardancy of polylactic acid. ACS Sustain Chem Eng. 2020;8:6402–12.

    Article  CAS  Google Scholar 

  37. Wang DY, Gohs U, Kang NJ, Leuteritz A, Boldt R, Wagenknecht U, et al. Method for simultaneously improving the thermal stability and mechanical properties of poly(lactic acid): Effect of high-energy electrons on the morphological, mechanical, and thermal properties of PLA/MMT nanocomposites. Langmuir. 2012;28:12601–8.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao X, Guerrero FR, Llorca J, Wang DY. New Superefficiently Flame-Retardant Bioplastic Poly(lactic acid): Flammability, Thermal Decomposition Behavior, and Tensile Properties. ACS Sustain Chem Eng. 2016;4:202–9.

    Article  CAS  Google Scholar 

  39. Jia YW, Zhao X, Fu T, Li DF, Guo Y, Wang XL, et al. Synergy effect between quaternary phosphonium ionic liquid and ammonium polyphosphate toward flame retardant PLA with improved toughness. Compos Part B Eng. 2020;197:108192(1–11).

  40. Yu S, Xiang H, Zhou J, Zhu M. Enhanced flame-retardant performance of poly (lactic acid) (PLA) composite by using intrinsically phosphorus-containing PLA. Prog Nat Sci Mater Int. 2018;28:590–7.

    Article  CAS  Google Scholar 

  41. Zhang L, Li Z, Pan YT, Yáñez AP, Hu S, Zhang XQ, et al. Polydopamine induced natural fiber surface functionalization: a way towards flame retardancy of flax/poly(lactic acid) biocomposites. Compos Part B Eng. 2018;154:56–63.

    Article  CAS  Google Scholar 

  42. Zhang L, Chen S, Pan YT, Zhang S, Nie S, Wei P, et al. Nickel metal-organic framework derived hierarchically mesoporous nickel phosphate toward smoke suppression and mechanical enhancement of intumescent flame retardant wood fiber/poly(lactic acid) composites. ACS Sustain Chem Eng. 2019;7:9272–80.

    Article  CAS  Google Scholar 

  43. Sobolewski P, Murthy NS, Kohn J, El Fray M. Adsorption of fibrinogen and fibronectin on elastomeric poly(butylene succinate) copolyesters. Langmuir. 2019;35:8850–9.

    Article  CAS  PubMed  Google Scholar 

  44. Xu J, Guo BH. Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol J. 2010;5:1149–63.

    Article  CAS  PubMed  Google Scholar 

  45. Liu YJ, Mao L, Fan SH. Preparation and study of intumescent flame retardant poly(butylene succinate) using MgAlZnFe-CO3 layered double hydroxide as a synergistic agent. J Appl Polym Sci. 2014;131:40736(1–10).

  46. Hu C, Bourbigot S, Delaunay T, Collinet M, Marcille S, Fontaine G. Synthesis of isosorbide based flame retardants: Application for polybutylene succinate. Polym Degrad Stab. 2019;164:9–17.

    Article  CAS  Google Scholar 

  47. Wang Y, Liu C, Shi X, Liang J, Jia Z, Shi G. Synergistic effect of halloysite nanotubes on flame resistance of intumescent flame retardant poly(butylene succinate) composites. Polym Compos. 2019;40:202–9.

    Article  CAS  Google Scholar 

  48. Chen S, Wu F, Hu Y, Lin S, Yu C, Zhu F, et al. A fully bio-based intumescent flame retardant for poly(butylene succinate). Mater Chem Phys. 2020;252:123222.

    Article  CAS  Google Scholar 

  49. Yue J, Liu C, Zhou C, Fu X, Luo L, Gan L, et al. Enhancing flame retardancy and promoting initial combustion carbonization via incorporating electrostatically surface-functionalized carbon nanotube synergist into intumescent flame-retardant poly(butylene succinate). Polymer. 2020;189:122197.

    Article  CAS  Google Scholar 

  50. Zhou X, Wu T. Synthesis, characterization of phosphorus-containing copolyester and its application as flame retardants for poly(butylene succinate) (PBS). Chemosphere. 2019;235:163–8.

    Article  CAS  PubMed  Google Scholar 

  51. Wang X, Song L, Yang H, Lu H, Hu Y. Synergistic effect of graphene on antidripping and fire resistance of intumescent flame retardant poly(butylene succinate) composites. Ind Eng Chem Res. 2011;50:5376–83.

    Article  CAS  Google Scholar 

  52. Chen Y, Zhan J, Zhang P, Nie S, Lu H, Song L, et al. Preparation of intumescent flame retardant poly(butylene succinate) using fumed silica as synergistic agent. Ind Eng Chem Res. 2010;49:8200–8.

    Article  CAS  Google Scholar 

  53. Jiang SC, Yang YF, Ge SB, Zhang ZF, Peng WX. Preparation and properties of novel flame-retardant PBS wood-plastic composites. Arab J Chem King Saud Univ. 2018;11:844–57.

    CAS  Google Scholar 

  54. Liu P, Yue X, He G, Zhang X, Sun Y. Influence of modified fiber–MHSH hybrids on fire hazards, combustion dynamics, and mechanical properties of flame-retarded poly(butylene succinate) composites. J Appl Polym Sci. 2020;137:48490(1–12).

  55. Wang Y, Liu C, Lai J, Lu C, Wu X, Cai Y, et al. Soy protein and halloysite nanotubes-assisted preparation of environmentally friendly intumescent flame retardant for poly(butylene succinate). Polym Test. 2020;81:106174.

  56. Zhang Y, Hu Y, Wang J, Tian W, Liew KM, Zhang Y, et al. Engineering carbon nanotubes wrapped ammonium polyphosphate for enhancing mechanical and flame retardant properties of poly(butylene succinate). Compos Part A Appl Sci Manuf. 2018;115:215–27.

    Article  CAS  Google Scholar 

  57. Weng YX, Wang XL, Wang YZ. Biodegradation behavior of PHAs with different chemical structures under controlled composting conditions. Polym Test. 2011;30:372–80.

    Article  CAS  Google Scholar 

  58. Adeleye AT, Odoh CK, Enudi OC, Banjoko OO, Osiboye OO, Toluwalope Odediran E, et al. Sustainable synthesis and applications of polyhydroxyalkanoates (PHAs) from biomass. Process Biochem. 2020;96:174–93.

    Article  CAS  Google Scholar 

  59. Lomas AJ, Webb WR, Han J, Chen GQ, Sun X, Zhang Z, et al. Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)/collagen hybrid scaffolds for tissue engineering applications. Tissue Eng - Part C Methods. 2013;19:577–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hart JR. Chemical equilibrium and molar group contribution analysis of the flammability of poly-3-hydroxybutyrate. Polym Degrad Stab. 2013;98:387–91.

    Article  CAS  Google Scholar 

  61. Ma H, Wei Z, Zhou S, Zhu H, Tang J, Yin J, et al. Supernucleation, crystalline structure and thermal stability of bacterially synthesized poly(3-hydroxybutyrate) polyester tailored by thymine as a biocompatible nucleating agent. Int J Biol Macromol. 2020;165:1562–73.

    Article  CAS  PubMed  Google Scholar 

  62. Bertini F, Canetti M, Cacciamani A, Elegir G, Orlandi M, Zoia L. Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polym Degrad Stab. 2012;97:1979–87.

    Article  CAS  Google Scholar 

  63. Ru Z, Hua H, Wei Y, Xifu X, Yuan H. Effect of zinc borate on the fire and thermal degradation behaviors of a poly(3-hydroxybutyrate-co-4-hydroxybutyrate)-containing intumescent flame retardant. J Appl Polym Sci. 2012;125:3946–55.

    Article  CAS  Google Scholar 

  64. Battegazzore D, Noori A, Frache A. Hemp hurd and alfalfa as particle filler to improve the thermo-mechanical and fire retardant properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Polym Compos. 2019;40:3429–37.

    Article  CAS  Google Scholar 

  65. Kulshreshtha Y, Schlangen E, Jonkers HM, Vardon PJ, van Paassen LA. CoRncrete: a corn starch based building material. Constr Build Mater. 2017;154:411–23.

    Article  CAS  Google Scholar 

  66. Akindahunsi AA. Investigation into the use of extracted starch from cassava and maize as admixture on the creep of concrete. Constr Build Mater. 2019;214:659–67.

    Article  Google Scholar 

  67. Benitha Sandrine U, Isabelle V, Ton Hoang M, Maalouf C. Influence of chemical modification on hemp-starch concrete. Constr Build Mater. 2015;81:208–15.

    Article  Google Scholar 

  68. Ai AH, Yi-Qiu T, Hameed AT. Starch as a modifier for asphalt paving materials. Constr Build Mater. 2011;25:14–20.

    Article  Google Scholar 

  69. Li M, Bi Z, Xie L, Sun G, Liu Z, Kong Q, et al. From starch to carbon materials: insight into the cross-linking reaction and its influence on the carbonization process. ACS Sustain Chem Eng. 2019;7:14796–804.

    Article  CAS  Google Scholar 

  70. Passauer L. Thermal characterization of ammonium starch phosphate carbamates for potential applications as bio-based flame-retardants. Carbohydr Polym Elsevier. 2019;211:69–74.

    Article  CAS  Google Scholar 

  71. Wang D, Wang Y, Li T, Zhang S, Ma P, Shi D, et al. A Bio-Based Flame-Retardant Starch Based on Phytic Acid. ACS Sustain Chem Eng. 2020;8:10265–74.

    Article  CAS  Google Scholar 

  72. Lowden L, Hull T. Flammability behaviour of wood and a review of the methods for its reduction. Fire Sci Rev. 2013;2(4):1–19.

    Google Scholar 

  73. Haurie L, Giraldo MP, Lacasta AM, Montón J, Sonnier R. Influence of different parameters in the fire behaviour of seven hardwood species. Fire Saf J. 2019;107:193–201.

    Article  CAS  Google Scholar 

  74. G. Tondi, L. Haurie, S. Wieland , A. Petutschnigg , A. LJM. Comparison of disodium octaborate tetrahydrate-based and tannin-boron-based formulations as fire retardant for wood structures. Fire Mater. 2014;38:381–90.

  75. Elvira-León JC, Chimenos JM, Isábal C, Monton J, Formosa J, Haurie L. Epsomite as flame retardant treatment for wood: Preliminary study. Constr Build Mater. 2016;126:936–42.

    Article  CAS  Google Scholar 

  76. Ma T, Li L, Wang Q, Guo C. Targeted synthesis of Zn-based porous aromatic framework for enhancing fire safety and anti-corrosion performance of wood substrate. Compos Part B Eng. 2020;183:107697.

    Article  CAS  Google Scholar 

  77. Yan L, Xu Z, Liu D. Synthesis and application of novel magnesium phosphate ester flame retardants for transparent intumescent fire-retardant coatings applied on wood substrates. Prog Org Coat. 2019;129:327–37.

    Article  CAS  Google Scholar 

  78. Fei W, Zhenzhong G, Min Z, Jin S. Thermal degradation and fire performance of plywood treated with expanded vermiculite. Fire Mater. 2016;40:427–33.

    Article  CAS  Google Scholar 

  79. Kong L, Guan H, Wang X. In Situ Polymerization of Furfuryl Alcohol with Ammonium Dihydrogen Phosphate in Poplar Wood for Improved Dimensional Stability and Flame Retardancy. ACS Sustain Chem Eng. 2018;6:3349–57.

    Article  CAS  Google Scholar 

  80. Chen G, Chen C, Pei Y, He S, Liu Y, Jiang B, et al. A strong, flame-retardant, and thermally insulating wood laminate. Chem Eng J. 2020;383:123109.

    Article  CAS  Google Scholar 

  81. Li W, Zhang Z, Zhou G, Leng W, Mei C. Understanding the interaction between bonding strength and strain distribution of plywood. Int J Adhes Adhes. 2020;98:102506.

    Article  CAS  Google Scholar 

  82. Wang YC, Deng J, Zhao JP, Shi H. Pyrolysis kinetics of ZrP-containing aliphatic waterborne polyurethane-based intumescent coating for flame-retarding plywood. Prog Org Coatings. 2020;148:105845.

    Article  CAS  Google Scholar 

  83. Wang YC, Zhao JP. Preliminary study on decanoic/palmitic eutectic mixture modified silica fume geopolymer-based coating for flame retardant plywood. Constr Build Mater. 2018;189:1–7.

    Article  CAS  Google Scholar 

  84. Wang YC, Zhao JP, Chen J. Effect of polydimethylsiloxane viscosity on silica fume-based geopolymer hybrid coating for flame-retarding plywood. Constr Build Mater. 2020;239:117814.

    Article  CAS  Google Scholar 

  85. Wang W, Zammarano M, Shields JR, Knowlton ED, Kim I, Gales JA, et al. A novel application of silicone-based flame-retardant adhesive in plywood. Constr Build Mater. 2018;189:448–59.

    Article  CAS  Google Scholar 

  86. Goh Y, Yap SP, Tong TY. Bamboo: the emerging renewable material for sustainable construction. Encycl Renew Sustain Mater. 2020;2:365–76.

    Article  Google Scholar 

  87. Depuydt DEC, Billington L, Fuentes C, Sweygers N, Dupont C, Appels L, et al. European bamboo fibres for composites applications, study on the seasonal influence. Ind Crops Prod. 2019;133:304–16.

    Article  CAS  Google Scholar 

  88. Awoyera PO, Adesina A. Structural integrity assessment of bamboo for construction purposes. Encycl Renew Sustain Mater. 2017;2:326–36.

    Article  Google Scholar 

  89. Darzi S, Karampour H, Bailleres H, Gilbert BP, Fernando D. Load bearing sandwich timber walls with plywood faces and bamboo core. Structures. 2020;27:2437–50.

    Article  Google Scholar 

  90. Wang J, Jin C, Sun Q, Zhang Q. Fabrication of nanocrystalline anatase TiO2in a graphene network as a bamboo coating material with enhanced photocatalytic activity and fire resistance. J Alloys Compd. 2017;702:418–26.

    Article  CAS  Google Scholar 

  91. Solarte A, Numapo J, Do T, Bolanos A, Hidalgo JP, Torero JL. Understanding fire growth for performance based design of bamboo structures. Fire Saf J. 2021;120:103057.

    Article  CAS  Google Scholar 

  92. Ge S, Ma NL, Jiang S, Ok YS, Lam SS, Li C, et al. Processed bamboo as a novel formaldehyde-free high-performance furniture biocomposite. ACS Appl Mater Interfaces. 2020;12:30824–32.

    Article  CAS  PubMed  Google Scholar 

  93. Guo W, Kalali EN, Wang X, Xing W, Zhang P, Song L, et al. Processing bulk natural bamboo into a strong and flame-retardant composite material. Ind Crops Prod. 2019;138:111478.

    Article  CAS  Google Scholar 

  94. Wang YY, Shih YF. Flame-retardant recycled bamboo chopstick fiber-reinforced poly(lactic acid) green composites via multifunctional additive system. J Taiwan Inst Chem Eng. 2016;65:452–8.

    Article  CAS  Google Scholar 

  95. Nie S, Liu X, Dai G, Yuan S, Cai F, Li B, et al. Investigation on Flame Retardancy and Thermal Degradation of Flame Retardant Poly(butylene succinate)/ Bamboo Fiber Biocomposites. J Appl Polym Sci. 2012;125:E485–9.

    Article  CAS  Google Scholar 

  96. Kalali EN, Zhang L, Shabestari ME, Croyal J, Wang DY. Flame-retardant wood polymer composites (WPCs) as potential fire safe bio-based materials for building products: Preparation, flammability and mechanical properties. Fire Saf J. 2019;107:210–6.

    Article  CAS  Google Scholar 

  97. Gibier M, Lacoste C, Corn S, Pucci MF, Tran QK, Haurie L, et al. Flame retardancy of wood-plastic composites by radiation-curing phosphorus-containing resins. Radiat Phys Chem. 2020;170:108547.

    Article  CAS  Google Scholar 

  98. Belayachi N, Hoxha D, Slaimia M. Impact of accelerated climatic aging on the behavior of gypsum plaster-straw material for building thermal insulation. Constr Build Mater. 2016;125:912–8.

    Article  CAS  Google Scholar 

  99. Barbieri V, Lassinantti Gualtieri M, Siligardi C. Wheat husk: A renewable resource for bio-based building materials. Constr Build Mater. 2020;251:118909.

    Article  CAS  Google Scholar 

  100. Belhadj B, Bederina M, Makhloufi Z, Goullieux A, Quéneudec M. Study of the thermal performances of an exterior wall of barley straw sand concrete in an arid environment. Energy Build. 2015;87:166–75.

    Article  Google Scholar 

  101. Maraveas C. Production of sustainable construction materials using agro-wastes. Materials. 2020;13:1–29.

    Article  CAS  Google Scholar 

  102. Anuradha Jabasingh S, Valli NC. Utilization of pretreated bagasse for the sustainable bioproduction of cellulase by Aspergillus nidulans MTCC344 using response surface methodology. Ind Crops Prod. 2011;34:1564–71.

    Article  CAS  Google Scholar 

  103. Liu L, Zou S, Li H, Deng L, Bai C, Zhang X, et al. Experimental physical properties of an eco-friendly bio-insulation material based on wheat straw for buildings. Energy Build. 2019;201:19–36.

    Article  Google Scholar 

  104. Platt S, Maskell D, Walker P, Laborel-Préneron A. Manufacture and characterisation of prototype straw bale insulation products. Constr Build Mater. 2020;262:120035.

    Article  Google Scholar 

  105. Ismail B, Belayachi N, Hoxha D. Optimizing performance of insulation materials based on wheat straw, lime and gypsum plaster composites using natural additives. Constr Build Mater. 2020;254:118959.

    Article  CAS  Google Scholar 

  106. Asdrubali F, D’Alessandro F, Schiavoni S. A review of unconventional sustainable building insulation materials. Sustain Mater Technol. 2015;4:1–17.

    CAS  Google Scholar 

  107. Blondin F, Blanchet P, Dagenais C, Triantafyllidis Z, Bisby L. Fire hazard of compressed straw as an insulation material for wooden structures. Fire Mater. 2020;44:736–46.

    Article  CAS  Google Scholar 

  108. Gao Y, Xing F, Jha M, Yadav KK, Yadav R, Matharu AS. Toward novel biocomposites from unavoidable food supply Chain Wastes and Zirconia. ACS Sustain Chem Eng. 2020;8:14039–46.

    Article  CAS  Google Scholar 

  109. Zhu XD, Wang FH, Liu Y. Properties of wheat-straw boards with FRW based on interface treatment. Phys Procedia. 2012;32:430–43.

    Article  CAS  Google Scholar 

  110. Belayachi N, Hoxha D, Ismail B. Impact of fiber treatment on the fire reaction and thermal degradation of building insulation straw composite. Energy Procedia. 2017;139:544–9.

    Article  CAS  Google Scholar 

  111. Marques B, Tadeu A, António J, Almeida J, de Brito J. Mechanical, thermal and acoustic behaviour of polymer-based composite materials produced with rice husk and expanded cork by-products. Constr Build Mater. 2020;239:117851.

    Article  CAS  Google Scholar 

  112. Marques B, Tadeu A, Almeida J, António J, de Brito J. Characterisation of sustainable building walls made from rice straw bales. J Build Eng. 2020;28:101041.

    Article  Google Scholar 

  113. Manique MC, Faccini CS, Onorevoli B, Benvenutti EV, Caramão EB. Rice husk ash as an adsorbent for purifying biodiesel from waste frying oil. Fuel. 2012;92:56–61.

    Article  CAS  Google Scholar 

  114. Shen Y, Fu Y. KOH-activated rice husk char via CO2 pyrolysis for phenol adsorption. Mater Today Energy. 2018;9:397–405.

    Article  Google Scholar 

  115. El-Sayed S. Thermal decomposition, kinetics and combustion parameters determination for two different sizes of rice husk using TGA. Eng Agric Environ Food. 2019;12:460–9.

    Article  Google Scholar 

  116. Marcilla A, García AN, Pastor MV, León M, Sánchez AJ, Gómez DM. Thermal decomposition of the different particles size fractions of almond shells and olive stones. Thermal behaviour changes due to the milling processes. Thermochim Acta. 2013;564:24–33.

    Article  CAS  Google Scholar 

  117. Jones M, Bhat T, Huynh T, Kandare E, Yuen R, Wang CH, et al. Waste-derived low-cost mycelium composite construction materials with improved fire safety. Fire Mater. 2018;42:816–25.

    Article  CAS  Google Scholar 

  118. Athinarayanan J, Periasamy VS, Alhazmi M, Alatiah KA, Alshatwi AA. Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceram Int. 2015;41:275–81.

    Article  CAS  Google Scholar 

  119. El-Sayed SA, Khass TM, Mostafa ME. Thermo-physical and kinetics parameters determination and gases emissions of self-ignition of sieved rice husk of different sizes on a hot plate. Asia-Pacific J Chem Eng. 2017;12:536–50.

    Article  CAS  Google Scholar 

  120. El-Sayed SA, Khass TM. Smoldering combustion of rice husk dusts on a hot surface. Combust Explos Shock Waves. 2013;49:159–66.

    Article  Google Scholar 

  121. Xie Q, Gao M, Huang X. Fire risk and behavior of rice during the convective drying process. Fire Saf J. 2020;115:103013.

    Article  CAS  Google Scholar 

  122. Zuo Y, Xiao J, Wang J, Liu W, Li X, Wu Y. Preparation and characterization of fire retardant straw/magnesium cement composites with an organic-inorganic network structure. Constr Build Mater. 2018;171:404–13.

    Article  CAS  Google Scholar 

  123. Tian X, Zhang H, Sheng C. Self-Heating of Agricultural Residues during Storage and Its Impact on Fuel Properties. Energy Fuels. 2018;32:4227–36.

    Article  CAS  Google Scholar 

  124. Shakouri M, Exstrom CL, Ramanathan S, Suraneni P. Hydration, strength, and durability of cementitious materials incorporating untreated corn cob ash. Constr Build Mater. 2020;243:118171.

    Article  CAS  Google Scholar 

  125. Pinto J, Paiva A, Varum H, Costa A, Cruz D, Pereira S, et al. Corn’s cob as a potential ecological thermal insulation material. Energy Build. 2011;43:1985–90.

    Article  Google Scholar 

  126. Palumbo M, Formosa J, Lacasta AM. Thermal degradation and fire behaviour of thermal insulation materials based on food crop by-products. Constr Build Mater. 2015;79:34–9.

    Article  Google Scholar 

  127. Palumbo M, Lacasta AM, Navarro A, Giraldo MP, Lesar B. Improvement of fire reaction and mould growth resistance of a new bio-based thermal insulation material. Constr Build Mater. 2017;139:531–9.

    Article  CAS  Google Scholar 

  128. Rosa A, Hammad AWA, Qualharini E, Vazquez E, Haddad A. Smoldering fire propagation in corn grain: an experimental study. Results Eng. 2020;7:100151.

    Article  Google Scholar 

  129. He F, Yi W, Li Y, Zha J, Luo B. Effects of fuel properties on the natural downward smoldering of piled biomass powder: experimental investigation. Biomass Bioenerg. 2014;67:288–96.

    Article  CAS  Google Scholar 

  130. Wyn HK, Konarova M, Beltramini J, Perkins G, Yermán L. Self-sustaining smouldering combustion of waste: A review on applications, key parameters and potential resource recovery. Fuel Process Technol. 2020;205:106425.

    Article  CAS  Google Scholar 

  131. Meng X, Zhou W, Yan Y, Ren X, Ismail TM, Sun R. Effects of preheating primary air and fuel size on the combustion characteristics of blended pinewood and corn straw in a fixed bed. Energy. 2020;210:118481.

    Article  CAS  Google Scholar 

  132. Sari NH, Pruncu CI, Sapuan SM, Ilyas RA, Catur AD, Suteja S, et al. The effect of water immersion and fibre content on properties of corn husk fibres reinforced thermoset polyester composite. Polym Test. 2020;91:106751.

    Article  CAS  Google Scholar 

  133. Ahmad MR, Chen B, Yousefi Oderji S, Mohsan M. Development of a new bio-composite for building insulation and structural purpose using corn stalk and magnesium phosphate cement. Energy Build. 2018;173:719–33.

    Article  Google Scholar 

  134. Viel M, Collet F, Lanos C. Development and characterization of thermal insulation materials from renewable resources. Constr Build Mater. 2019;214:685–97.

    Article  Google Scholar 

  135. Paiva A, Pereira S, Sá A, Cruz D, Varum H, Pinto J. A contribution to the thermal insulation performance characterization of corn cob particleboards. Energy Build. 2012;45:274–9.

    Article  Google Scholar 

  136. Binici H, Aksogan O, Demirhan C. Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials. Sustain Cities Soc. 2016;20:17–26.

    Article  Google Scholar 

  137. He F, Behrendt F. A new method for simulating the combustion of a large biomass particle-A combination of a volume reaction model and front reaction approximation. Combust Flame. 2011;158:2500–11.

    Article  CAS  Google Scholar 

Download references


This research is partly funded by China Scholarship Council (No.201608310142), State Key Laboratory of Explosion Science and Technology Project (YBKT21-07), and Project BIA2017-88401-R (AEI/FEDER, UE).

Author information

Authors and Affiliations



YY: Reference collection, Methodology, Formal analysis, Investigation, Writing—Original Draft. LH: Methodology, Revision, Writing—Review & Editing. D-YW: Conceptualization, Supervision, Writing—Review & Editing.

Corresponding author

Correspondence to De-Yi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Haurie, L. & Wang, DY. Bio-based materials for fire-retardant application in construction products: a review. J Therm Anal Calorim 147, 6563–6582 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: