Skip to main content
Log in

Synthesis and thermal evaluation of novel mono- and bis-adamantylated resorcinol-based phthalonitrile resins with enhanced solubility

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Phthalonitrile (PN) resins are high-temperature-resistant thermosetting polymers which find applications in military as well as aerospace owing to their outstanding performance. At present, most of the PN resins are melt-processed and cured at high temperature via resin transfer moulding owing to their poor solubility in common organic solvents. In the present, embodiment efforts have been made to change the PN resin backbone with adamantane as potential functionality. Mono- and novel bis-adamantylated resorcinols 1a and 1b have been synthesized via Amberlyst-15 solid acid resin-catalysed Friedel–Crafts alkylation reaction, as precursor material for the synthesis of novel phthalonitrile (PN) resin monomers 2a and 2b, respectively. The study includes structural and thermal characterization of resin monomers 2a and 2b along with their solubility in common organic solvents. These resins when cured to their thermosets have demonstrated thermal stability ~ 723 K (5% mass loss) with no glass transition temperature (Tg) up to 673 K. The resin monomers show very good solubility in industry-friendly organic solvents like acetone, ethyl acetate, methyl ethyl ketone and methyl isobutyl ketone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Derradji M, Jun W, Wenbin L. Phthalonitrile resins and composites: Properties and applications. 2nd ed. New York: William Andrew, 2018.

  2. Laskoski M, Neal A, Schear MB, Keller TM, Ricks-Laskoski HL, Saab AP. Oligomeric aliphatic-aromatic ether containing phthalonitrile resins. J Polym Sci: Part A: Polym Chem. 2015;53:2186–1.

    Article  CAS  Google Scholar 

  3. Liu T, Yang Y, Wang T, Wang H, Zhang H, Su Y, Jiang H. Synthesis and properties of poly(aryl ether ketone)-based phthalonitrile resins. Polym Eng Sci. 2014;54:1695–703.

    Article  CAS  Google Scholar 

  4. Brunovska Z, Lyon R, Ishida H. Thermal properties of phthalonitrile functional polybenzoxazines. Thermochim Acta. 2000;357–358:195–203.

    Article  Google Scholar 

  5. Augustine D, Mathew D, Nair CPR. One component propargyl phthalonitrile novolac: synthesis and characterization. Eur Polym J. 2015;71:389.

    Article  CAS  Google Scholar 

  6. Augustine D, Mathew D, Nair CPR. Phthalonitrile resin bearing cyanate ester groups: synthesis and characterization. RSC Adv. 2015;5:91254–61.

    Article  CAS  Google Scholar 

  7. Sumner MJ, Weyers RY, Rosario AC, Riffle JS, Sorathia U. Synthesis and characterization of vinyl ester networks containing phthalonitrile moieties. Polymer. 2004;45:5199–206.

    Article  CAS  Google Scholar 

  8. Zeng K, Zhou K, Zhou S, Hong H, Zhou H, Wang Y, Miao P, Yang G. Studies on self-promoted cure behaviors of hydroxy-containing phthalonitrile model compounds. Eur Polym J. 2009;45:1328–35.

    Article  CAS  Google Scholar 

  9. Singh C, Verma VP, Naikade NK, Singh AS, Hassam M, Puri SK. Novel Bis- and Tris-1,2,4-trioxanes: synthesis and antimalarial activity against multidrug-resistant Plasmodium yoelii in swiss mice. J Med Chem. 2008;51(23):7581–2.

    Article  CAS  PubMed  Google Scholar 

  10. Wishnok JS. Medicinal properties of adamantane derivatives. J Chem Educ. 1973;50(11):780–1.

    Article  CAS  PubMed  Google Scholar 

  11. Lamoureux G, Artavia G. Use of the adamantane structure in medicinal chemistry. Curr Med Chem. 2010;17:2967–8.

    Article  CAS  PubMed  Google Scholar 

  12. O’Neill PM. A worthy adversary for malaria. Nature. 2004;430:838–9.

    Article  PubMed  CAS  Google Scholar 

  13. Spasov AA, Khamidova TV, Bugaeva LI, Morozov IS. Molecular-biological problems of drug design and mechanism of drug action. Adamantane derivatives: pharmacological and toxicological properties (review). Pharm Chem J. 2000;34(1):3–9.

    Article  Google Scholar 

  14. Aparicio FJ, Blaszczyk-Lezak I, Sanchez-Valencia JR, Alcaire M, Gonzalez JC, Serra C, Gonzalez-Elipe AR, Barranco A. Plasma deposition of perylene-adamantane nanocomposite thin films for NO2 room-temperature optical sensing. J Phys Chem C. 2012;116(15):8731.

    Article  CAS  Google Scholar 

  15. Alcaire M, Cerdan L, Zamarro FL, Aparicio FJ, Gonzalez JC, Ferrer FJ, Borras A, Espinos JP, Barranco A. Multicolored emission and lasing in DCM-adamantane plasma nanocomposite optical films. ACS Appl Mater Interfaces. 2017;9(10):8948–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kim S, Kuroda K, Kuwahara Y, Ogata T, Ryohei Y, Kurihara S. Study for soluble and low-refractive index hyperbranched polymer consisting of fluoro adamantane. Mol Cryst Liq Cryst. 2014;601:116–25.

    Article  CAS  Google Scholar 

  17. Liao XX, Wang T, Wang J, Zheng JC, Wang C, Yam VWW. Optoelectronic properties of a fullerene derivative containing adamantane group. ACS Appl Mater Interfaces. 2013;5(19):9579–4.

    Article  CAS  PubMed  Google Scholar 

  18. Fukuhara T, Shibasaki Y, Ando S, Kishimura S, Endo M, Sasago M, Ueda M. Synthesis of poly [N-(1-adamantyl)vinylsulfonamide-co- 2 (2-methyl) adamantyl methacrylate] for 193 nm lithography. Macromolecules. 2005;38(8):3041–3.

    Article  CAS  Google Scholar 

  19. Matsumoto K, Costner EA, Nishimura I, Ueda M, Willson CG. High index resist for 193 nm immersion lithography. Macromolecules. 2008;41(15):5674.

    Article  CAS  Google Scholar 

  20. Leng HF, Wu WH. Synthesis of a novel fluorene-based conjugated polymer with pendent bulky caged adamantane moieties and its application in the detection of trace DNT explosives. React Funct Polym. 2012;72:206–11.

    Article  CAS  Google Scholar 

  21. Fu S-Q, Guo J-W, Zhu D-Y, Yang Z, Yang C-F, Xian J-X, Li X. Novel halogen-free flame retardants based on adamantane for polycarbonate. RSC Adv. 2015;5:67054–5.

    Article  CAS  Google Scholar 

  22. Kanehashi S, Konishi S, Takeo K, Owa K, Kawakita H, Sato S, Miyakoshi T, Nagai K. Effect of OH group on the water vapor sorption property of adamantane-containing polymer membranes. J Membr Sci. 2013;427:176–85.

    Article  CAS  Google Scholar 

  23. Chu PLE, Wang LY, Khatua S, Kolomeisky AB, Link S, Tour JM. Synthesis and single-molecule imaging of highly mobile adamantane-wheeled nano cars. ACS Nano. 2013;7(1):35–31.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Feng Y, Ishiwata H, Miyata Y, Kitaura R, Dahl JEP, Carlson RMK, Shinohara H, Tománek D. Synthesis and transformation of linear adamantane assemblies inside carbon nanotubes. ACS Nano. 2012;6(10):8674–83.

    Article  CAS  PubMed  Google Scholar 

  25. Log P values have been calculated using Chem Draw Ultra 10 software.

  26. Zanoozi M, Bayat Z. Prediction of 1 octanol/water partition coefficient of adamantine derivatives using QSAR method. Der Chem Sin. 2011;2(6):288–93.

    Google Scholar 

  27. Leo A, Hanch C, Elkins D. Partition coefficient and their uses. Chem Rev. 1971;71(6):525–616.

    Article  CAS  Google Scholar 

  28. Mathias LJ, Jensen JJ, Reichert VT, Lewis CM, Tullos GL (1996) Adamantane containing polymers. Step-Growth Polymers for High-Performance Materials, ACS Symposium Series. 624:Chapter11, pp 197–207.

  29. Mathews AS, Kim I, Ha CS. Fully aliphatic polyimides from adamantane-based diamines for enhanced thermal stability, solubility, transparency, and low dielectric constant. J Appl Polym Sci. 2006;102:3316–26.

    Article  CAS  Google Scholar 

  30. Matsumoto A, Tanaka S, Otsu T. Synthesis and characterization of poly(1-adamantyl methacrylate): Effects of the adamantyl group on radical polymerization kinetics and thermal properties of the polymer. Macromolecules. 1991;24:4017–24.

    Article  CAS  Google Scholar 

  31. Chern Y-T. Low dielectric constant polyimides derived from novel1,6-Bis[4-(4-aminophenoxy)phenyl]diadamantane. Macromolecules. 1998;31:5837–44.

    Article  CAS  Google Scholar 

  32. Chern Y-T. High subglass transitions appearing in the rigid polyimides derived from the novel 1,6-Bis(4-aminophenyl)diadamantane. Macromolecules. 1998;31:1898–905.

    Article  CAS  Google Scholar 

  33. Geng Z, Lu Y, Zhang S, Jiang X, Huo P, Luan J, Wang G. Synthesis and characterization of novel adamantane-based copoly(aryl ether ketone)s with low dielectric constants. Polym Int. 2014;63:333–7.

    Article  CAS  Google Scholar 

  34. Mathias LJ, Lewis CM, Wiegel KN. Poly (ether ether ketone)s and poly(ether sulfones) with pendent adamantyl groups. Macromolecules. 1997;30:5970–5.

    Article  CAS  Google Scholar 

  35. Acar HY, Jensen JJ, Thigpen K, McGowen JA, Mathias LJ. Evaluation of the spacer effect on adamantane-containing vinyl polymer Tg’s. Macromolecules. 2000;33:3855–9.

    Article  CAS  Google Scholar 

  36. Barkakaty B, Matsumoto K, Endo T. Synthesis and radical polymerization of adamantyl methacrylate monomers having hemiacetal moieties. Macromolecules. 2009;42(24):9481–5.

    Article  CAS  Google Scholar 

  37. Jensen JJ, Grimsley M, Mathias LJ. Adamantyl-substituted phenolic polymers. J Polym Sci A Polym Chem. 1996;34:397–402.

    Article  CAS  Google Scholar 

  38. Reenen AJV, Mathias LJ, Coetzee L. Polymerization of olefins with bulky substituents Homo and copolymerization of propene. Polymer. 2004;45:799–794.

    Article  CAS  Google Scholar 

  39. Chaturvedi V, Tanaka S, Kaeriyama K. Preparation of poly(p-phenylene) via a new precursor route. Macromolecules. 1993;26:2607–11.

    Article  CAS  Google Scholar 

  40. Archibald TG, Malik AA, Baum K, Unroe MR. Thermally stable acetylenic adamanatane polymers. Macromolecules. 1991;24:5261–5.

    Article  CAS  Google Scholar 

  41. Tsai CW, Wu KH, Yang CC, Wang GP. Adamantane-based epoxy resin and siloxane-modified adamantane based epoxy resin: characterization of thermal, dielectric and optical properties. React Funct Polym. 2015;91–92:11–8.

    Article  CAS  Google Scholar 

  42. Stroganov VF, Stroganov IV. Epoxy polymers based on functional adamantane derivatives. Polym Sci Ser D Glu Seal Mater. 2014;7(2):69–72.

    Article  CAS  Google Scholar 

  43. Allcock HR, Krause WE. Polyphosphazenes with adamantyl side groups. Macromolecules. 1997;30(19):5683–7.

    Article  CAS  Google Scholar 

  44. Cho SY, Allcock HR. Synthesis of adamantyl polyphosphazene-polystyrene block copolymers, and β-cyclodextrin-adamantyl side group complexation. Macromolecules. 2009;42(13):4484.

    Article  CAS  Google Scholar 

  45. Wang J-J, Chern Y-T, Chung M-A. Synthesis and characterization of new poly (N-1-adamantyl maleimide) and poly(N-1-diamantylmaleimide). J Polym Sci: Part A Polym Chem. 1996;34:3345–54.

    Article  CAS  Google Scholar 

  46. Reichert VR, Mathias LJ. Tetrahedrally oriented 4-armed star and branched aramids. Macromolecules. 1994;27:7024–9.

    Article  CAS  Google Scholar 

  47. Espeso JF, Campa JGDL, Lozano AE, Abajo JD. Synthesis and characterization of new soluble aromatic polyamides based on 4-(1-adamantyl)-1, 3-bis(4-aminophenoxy)benzene. J Polym Sci: Part A: Polym Chem. 2000;38:1014–23.

    Article  CAS  Google Scholar 

  48. Singh AS, Shukla SK, Alam S, Preparation of phthalonitrile resins and thereof. Indian patent application no:1013/DEL/2015.

  49. Lu D, Meng Z, Thakur GA, Fan P, Steed J, Tartal CL, Hurst DP, Reggio PH, Deschamps JR, Parrish DA, George C, Jarbe TUC, Lamb RJ, Makriyannis A. Adamantyl cannabinoids: a novel class of cannabinergic ligands. J Med Chem. 2005;48:4576–85.

    Article  CAS  PubMed  Google Scholar 

  50. Thakur GA, Bajaj S, Paronis C, Peng Y, Bowman AL, Barak LS, Caron MG, Parrish D, Deschamps JR, Makriyannis A. Novel adamantyl cannabinoids as CB1 receptor probes. J Med Chem. 2013;56(10):3904–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bora PP, Vanlaldinpuia K, Rokhum L, Bez G. Amberlyst-15 catalyzed Cbz protection of amines under solvent-free conditions. Synth Commun. 2011;41:2674–83.

    Article  CAS  Google Scholar 

  52. Letinois U, Bonrath W. Selective reduction of dimedone. Sustainability. 2009;1:209–14.

    Article  CAS  Google Scholar 

  53. Singh AS, Shukla SK, Pandey AK, Tripathi DN, Prasad NA. Synthesis and evaluation of catalytic curing behavior of novel nitrile-functionalized benzoxazine for phthalonitrile resins. Polym Bull. 2018;75(8):3781.

    Article  CAS  Google Scholar 

  54. Van Krevelan DW. Properties of polymers. New York: Elsevier; 1990. p. 64.

    Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to Mr. Ram Prakash for his valuable suggestions in drafting the manuscript. The authors are also thankful to director DMSRDE, for providing necessary support to carry out work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Shankar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2910 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.S., Shukla, S.K., Mishra, P. et al. Synthesis and thermal evaluation of novel mono- and bis-adamantylated resorcinol-based phthalonitrile resins with enhanced solubility. J Therm Anal Calorim 147, 6665–6677 (2022). https://doi.org/10.1007/s10973-021-10991-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10991-0

Keywords

Navigation