Skip to main content
Log in

A comparison between average and local thermal evaluations to improve the performance of a direct contact membrane distillation for the solar desalination purposes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Local parameter evaluation needs so much computing effort and reduces the fastness of code capability. Hence, in this paper a comparison of local and averaged of various model parameters is made in order of finding which parameters could be replaced by averaged value with negligible effect on performance evaluation of a direct contact membrane distillation (DCMD) for solar desalination purposes. In this regard, a one-dimensional model of a DCMD is introduced in which all fluid and membrane properties are evaluated locally as well as temperature-dependent. Then each parameter is replaced by the mean value and the accuracy of developed model is compared by experimental data. Results show that it is possible to alternatively implement mean value without noticeably accuracy loss. In addition, because the experimental data are in laboratory scale a large-scale simulation is also done. A comparison of results shows that for large-scale simulation, it is also possible to use average value parameters instead of local evaluations while the speed of simulation increases significantly and no noticeably accuracy loss occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A:

Cross-sectional area [m2]

AD:

Average deviation

B:

Mass flux coefficient of membrane [kg m−2 Pa−1 s−1]

D:

Diffusion coefficient of water [m2 s−1]

H:

Specific enthalpy [J kg−1], height and thickness [m]

\(h_{t}\) :

Convective heat transfer coefficient [W m−2 K−1]

J:

Vapor flux [kg m−2 s−1]

K:

Membrane/vapor thermal conductivity [W m−1 K−1]

L:

Channel length [m]

M :

Molecular mass [kg mol−1]

\(\dot{m}\) :

Channel mass flow rate [kg s−1]

P:

pressure [Pa]

Q :

Flow rate [lit min−1]

\(q_{\rm m}\) :

Membrane heat flux [W m−2]

R:

Gas constant [J K−1 mol−1]

r:

Membrane [μm] pore size

s:

Salinity [ppm]

T:

Temperature [°C]

\(z^{*}\) :

Non-dimensional axial position

\(\delta\) :

Thickness of membrane [\(\upmu{\rm m}\)]

\(\varepsilon\) :

Channel aspect ratio

\(\in\) :

Porosity of membrane

\(\lambda\) :

Water conductivity [W m−1 K−1]

\(\mu\) :

Water viscosity [Pa s]

\(\tau\) :

Tortuosity of membrane

a:

Air

ave:

Average

b:

Bulk

f:

Feed

in:

Inlet

m:

Membrane

p:

Permeate

s:

Solid

sw:

Seawater

v:

Vapor

w:

Water

References

  1. Kiss AA, Kattan Readi OM. An industrial perspective on membrane distillation processes. J Chem Technol Biotechnol. 2018;93(8):2047–55.

    Article  CAS  Google Scholar 

  2. Hausmann A, et al. Performance assessment of membrane distillation for skim milk and whey processing. J Dairy Sci. 2014;97(1):56–71.

    Article  CAS  PubMed  Google Scholar 

  3. Al-Obaidani S, et al. Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. J Membr Sci. 2008;323(1):85–98.

    Article  CAS  Google Scholar 

  4. Saffarini RB, Summers EK, Arafat HA. Technical evaluation of stand-alone solar powered membrane distillation systems. Desalination. 2012;286:332–41.

    Article  CAS  Google Scholar 

  5. Hausmann A, et al. Integration of membrane distillation into heat paths of industrial processes. Chem Eng J. 2012;211:378–87.

    Article  CAS  Google Scholar 

  6. Walton J, et al. Solar and waste heat desalination by membrane distillation. Desalin Water Purif Res Develop Prog Rep. 2004;81:20.

    Google Scholar 

  7. Mericq J-P, Laborie S, Cabassud C. Vacuum membrane distillation of seawater reverse osmosis brines. Water Res. 2010;44(18):5260–73.

    Article  CAS  PubMed  Google Scholar 

  8. Ji X, et al. Membrane distillation-crystallization of seawater reverse osmosis brines. Sep Purif Technol. 2010;71(1):76–82.

    Article  CAS  Google Scholar 

  9. Drioli E, et al. Integrated membrane operations in desalination processes. Desalination. 1999;122(2–3):141–5.

    Article  CAS  Google Scholar 

  10. Wu HY, Wang R, Field RW. Direct contact membrane distillation: An experimental and analytical investigation of the effect of membrane thickness upon transmembrane flux. J Membr Sci. 2014;470:257–65.

    Article  CAS  Google Scholar 

  11. Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: a comprehensive review. Desalination. 2012;287:2–18.

    Article  CAS  Google Scholar 

  12. Khayet M. Membranes and theoretical modeling of membrane distillation: a review. Adv Coll Interface Sci. 2011;164(1–2):56–88.

    Article  CAS  Google Scholar 

  13. Ali A, et al. Optimization of module length for continuous direct contact membrane distillation process. Chem Eng Process. 2016;110:188–200.

    Article  CAS  Google Scholar 

  14. Ali A, et al. Designing and optimization of continuous direct contact membrane distillation process. Desalination. 2018;426:97–107.

    Article  CAS  Google Scholar 

  15. Khalifa A, et al. Experimental and theoretical investigations on water desalination using direct contact membrane distillation. Desalination. 2017;404:22–34.

    Article  CAS  Google Scholar 

  16. Manawi YM, et al. A predictive model for the assessment of the temperature polarization effect in direct contact membrane distillation desalination of high salinity feed. Desalination. 2014;341:38–49.

    Article  CAS  Google Scholar 

  17. Schofield R, et al. Factors affecting flux in membrane distillation. Desalination. 1990;77:279–94.

    Article  CAS  Google Scholar 

  18. Abu Al-Rub FA, Banat F, Beni-Melhim K. Parametric sensitivity analysis of direct contact membrane distillation. Separation Sci Technol. 2002;37(14):3245–71.

    Article  Google Scholar 

  19. Bahmanyar A, Asghari M, Khoobi N. Numerical simulation and theoretical study on simultaneously effects of operating parameters in direct contact membrane distillation. Chem Eng Process. 2012;61:42–50.

    Article  CAS  Google Scholar 

  20. Bouchrit R, et al. Direct contact membrane distillation: Capability to treat hyper-saline solution. Desalination. 2015;376:117–29.

    Article  CAS  Google Scholar 

  21. Lee J-G, et al. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane. J Membr Sci. 2015;478:85–95.

    Article  CAS  Google Scholar 

  22. Hayer H, Bakhtiari O, Mohammadi T. Simulation of momentum, heat and mass transfer in direct contact membrane distillation: a computational fluid dynamics approach. J Ind Eng Chem. 2015;21:1379–82.

    Article  CAS  Google Scholar 

  23. Hwang HJ, et al. Direct contact membrane distillation (DCMD): experimental study on the commercial PTFE membrane and modeling. J Membr Sci. 2011;371(1–2):90–8.

    Article  CAS  Google Scholar 

  24. Rezakazemi M. CFD simulation of seawater purification using direct contact membrane desalination (DCMD) system. Desalination. 2018;443:323–32.

    Article  CAS  Google Scholar 

  25. El Kadi K, Janajreh I, Hashaikeh R. Numerical simulation and evaluation of spacer-filled direct contact membrane distillation module. Appl Water Sci. 2020;10(7):1–17.

    Google Scholar 

  26. Al-Turki YA, et al. Flat sheet direct contact membrane distillation desalination system using temperature-dependent correlations: thermal efficiency via a multi-parameter sensitivity analysis based on Monte Carlo method. J Therm Anal Calorimetry. 2021;144(6):2641–52.

    Article  CAS  Google Scholar 

  27. Curcio E, Drioli E. Membrane distillation and related operations—a review. Sep Purif Rev. 2005;34(1):35–86.

    Article  CAS  Google Scholar 

  28. Summers EK, Arafat HA. Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations. Desalination. 2012;290:54–66.

    Article  CAS  Google Scholar 

  29. Hitsov I, et al. Modelling approaches in membrane distillation: a critical review. Sep Purif Technol. 2015;142:48–64.

    Article  CAS  Google Scholar 

  30. Khayet M, Velázquez A, Mengual JI. Modelling mass transport through a porous partition: effect of pore size distribution. J Non-Equilib Thermodyn. 2004;29(3):279–99.

    Article  CAS  Google Scholar 

  31. Rao G, Hiibel SR, Childress AE. Simplified flux prediction in direct-contact membrane distillation using a membrane structural parameter. Desalination. 2014;351:151–62.

    Article  CAS  Google Scholar 

  32. Lawson KW, Lloyd DR. Membrane distillation. J Membr Sci. 1997;124(1):1–25.

    Article  CAS  Google Scholar 

  33. Khayet M, Godino M, Mengual J. Modelling transport mechanism through a porous partition. J Non-Equilib Thermodyn. 2001;26(1):1–14.

    Article  CAS  Google Scholar 

  34. Phattaranawik J, Jiraratananon R. Direct contact membrane distillation: effect of mass transfer on heat transfer. J Membr Sci. 2001;188(1):137–43.

    Article  CAS  Google Scholar 

  35. Muzychka Y, Yovanovich M. Laminar forced convection heat transfer in the combined entry region of non-circular ducts. J Heat Transfer. 2004;126(1):54–61.

    Article  Google Scholar 

  36. Sharqawy MH, Lienhard JH, Zubair SM. Thermophysical properties of seawater: a review of existing correlations and data. Desalin Water Treat. 2010;16(1–3):354–80.

    Article  CAS  Google Scholar 

  37. Nayar KG, Sharqawy MH, Banchik LD. Thermophysical properties of seawater: a review and new correlations that include pressure dependence. Desalination. 2016;390:1–24.

    Article  CAS  Google Scholar 

  38. Jamieson D, et al. Physical properties of sea water solutions: heat capacity. Desalination. 1969;7(1):23–30.

    Article  CAS  Google Scholar 

  39. Martı́nez-Dı́ez L, Vazquez-Gonzalez MI. Temperature and concentration polarization in membrane distillation of aqueous salt solutions. J Membr Sci. 1999;156(2):265–73.

    Article  Google Scholar 

  40. Abdulrazzaq T, Togun H, Goodarzi M, Kazi S, Ariffin M, Adam N, Hooman K. Turbulent heat transfer and nanofluid flow in an annular cylinder with sudden reduction. J Therm Anal Calorimetry. 2020;141(1):373–85.

    Article  CAS  Google Scholar 

  41. Ahmadi MH, Mohseni-Gharyehsafa B, Ghazvini M, Goodarzi M, Jilte RD, Kumar R. Comparing various machine learning approaches in modeling the dynamic viscosity of CuO/water nanofluid. J Therm Anal Calorim. 2020;139(4):2585–99.

    Article  CAS  Google Scholar 

  42. Bahiraei M, Jamshidmofid M, Goodarzi M. Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. J Mol Liq. 2019;273:88–98. https://doi.org/10.1016/j.molliq.2018.10.003.

    Article  CAS  Google Scholar 

  43. Bahmani MH, Sheikhzadeh G, Zarringhalam M, Akbari OA, Alrashed AA, Shabani GAS, Goodarzi M. Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Adv Powder Technol. 2018;29(2):273–82. https://doi.org/10.1016/j.apt.2017.11.013.

    Article  CAS  Google Scholar 

  44. Giwa S, Sharifpur M, Goodarzi M, Alsulami H, Meyer J. Influence of base luid, temperature, and concentration on the thermophysical properties of hybrid nanoluids of alumina–ferroluid: experimental data, modeling through enhanced ANN, ANFIS, and curve itting. J Therm Anal Calorim. 2021;143:4149–67.

    Article  CAS  Google Scholar 

  45. Homod RZ, Almusaed A, Almssad A, Jaafar MK, Goodarzi M, Sahari KS. Effect of different building envelope materials on thermal comfort and air-conditioning energy savings: a case study in Basra city. Iraq, J Energy Storage. 2021;34:101975.

    Article  Google Scholar 

  46. Bagherzadeh SA, Jalali E, Sarafraz MM, Akbari OA, Karimipour A, Goodarzi M, Bach Q-V. Effects of magnetic field on micro cross jet injection of dispersed nanoparticles in a microchannel. Int J Numer Meth Heat Fluid Flow. 2020;30(5):2683–704. https://doi.org/10.1108/HFF-02-2019-0150.

    Article  Google Scholar 

  47. Bagherzadeh SA, D’Orazio A, Karimipour A, Goodarzi M, Bach QV. A novel sensitivity analysis model of EANN for F-MWCNTs–Fe3O4/EG nanofluid thermal conductivity: outputs predicted analytically instead of numerically to more accuracy and less costs. Physica A: Statist Mech Appl. 2019;521:406–15. https://doi.org/10.1016/j.physa.2019.01.048.

    Article  CAS  Google Scholar 

  48. Mat MNH, Asmuin NZ, Basir MFM, Abbas T, Kasihmuddin MSM, Goodarzi M. Influence of nozzle area ratio on the gas-particle low for single-hose dry ice blasting nozzle. J Therm Anal Calorim. 2020 (in Press).

  49. Mat MNH, Asmuin NZ, Basir MFM, Goodarzi M, Abd Rahman MF, Khairulfuaad R, Jabbar BA, Kasihmuddin MSM. Influence of divergent length on the gas-particle flow in dual hose dry ice blasting nozzle geometry. Powder Technol. 2020;364:152–8.

    Article  CAS  Google Scholar 

  50. Mat MNH, Asmuin NZ, Basir MFM, Goodarzi M, Hasan NH. Effect of impact force for dual-hose dry blasting nozzle geometry for various pressure and distance: an experimental work. Eur Phys J Plus. 2020;135(2):1–11.

    Article  Google Scholar 

  51. Pordanjani AH, Aghakhani S, Karimipour A, Afrand M, Goodarzi M. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J Therm Anal Calorim. 2019;137(3):997–1019.

    Article  CAS  Google Scholar 

  52. Safaei MR, Ranjbarzadeh R, Hajizadeh A, Bahiraei M, Afrand M, Karimipour A. Effects of cobalt ferrite coated with silica nanocomposite on the thermal conductivity of an antifreeze: new nanofluid for refrigeration condensers. Int J Refrig. 2019;102:86–95.

    Article  CAS  Google Scholar 

  53. Sarafraz MM, Goodarzi M, Tlili I, Alkanhal TA, Arjomandi M. Thermodynamic potential of a high-concentration hybrid photovoltaic/thermal plant for co-production of steam and electricity. J Therm Anal Calorim. 2021;143:1389–98.

    Article  CAS  Google Scholar 

  54. Sarafraz MM, Tian Z, Tlili I, Kazi S, Goodarzi M. Thermal evaluation of a heat pipe working with n-pentane-acetone and n-pentane-methanol binary mixtures. J Therm Anal Calorim. 2020;139(4):2435–45.

    Article  CAS  Google Scholar 

  55. Ranjbarzadeh R, Karimipour A, Afrand M, Isfahani AHM, Shirneshan A. Empirical analysis of heat transfer and friction factor of water/graphene oxide nanofluid flow in turbulent regime through an isothermal pipe. Appl Therm Eng. 2017;126:538–47.

    Article  CAS  Google Scholar 

  56. Ranjbarzadeh R, Isfahani AM, Afrand M, Karimipour A, Hojaji M. An experimental study on heat transfer and pressure drop of water/graphene oxide nanofluid in a copper tube under air cross-flow: applicable as a heat exchanger. Appl Therm Eng. 2017;125:69–79.

    Article  CAS  Google Scholar 

  57. Alsarraf J, Shahsavar A, Khaki M, Ranjbarzadeh R, Karimipour A, Afrand M. Numerical investigation on the effect of four constant temperature pipes on natural cooling of electronic heat sink by nanofluids: a multifunctional optimization. Adv Powder Technol. 2020;31(1):416–32.

    Article  CAS  Google Scholar 

  58. Jiang Y, Sulgani MT, Ranjbarzadeh R, Karimipour A, Nguyen TK. Hybrid GMDH-type neural network to predict fluid surface tension, shear stress, dynamic viscosity & sensitivity analysis based on empirical data of iron (II) oxide nanoparticles in light crude oil mixture. Physica A: Statist Mech Appl. 2019;526:120948.

    Article  CAS  Google Scholar 

  59. Nguyen Q, Naghieh A, Kalbasi R, Akbari M, Karimipour A, Tlili I. Efficacy of incorporating PCMs into the commercial wall on the energy-saving annual thermal analysis. J Therm Anal Calorim. 2021;143(3):2179–87.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aldabesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldabesh, A. A comparison between average and local thermal evaluations to improve the performance of a direct contact membrane distillation for the solar desalination purposes. J Therm Anal Calorim 147, 7459–7470 (2022). https://doi.org/10.1007/s10973-021-10988-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10988-9

Keywords

Navigation