Skip to main content
Log in

Thermochemical analysis of intermolecular interactions of L-carnosine with isonicotinic acid in aqueous solutions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Investigation of the interactions between pyridine derivatives and model compounds of protein, as dipeptides and oligopeptides, is of special interest for pharmaceutical applications. Studies on physicochemical properties of their aqueous solutions play key role in understanding the nature of molecular interactions in liquid mixtures. Here the calorimetric method was used to measure the enthalpy of mixing in aqueous solutions of the dipeptide L-carnosine with the drug isonicotinic acid. The data were analyzed based on the McMillan–Mayer theory to obtain the cross-pair interaction coefficient, hxy, that indicates relatively strong interactions with predominant hydrophilic specific interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr Opin Biotechnol. 2007;18:26–30.

    Article  CAS  Google Scholar 

  2. Attoui-Yahia O, Khatmi D, Kraim KJ. Hydrogen bonding investigation in Pyridoxine/b-cyclodextrin complex based on QTAIM and NBO approaches. J Taiwan Inst Chem Eng. 2015;47:91–8.

    Article  CAS  Google Scholar 

  3. Svensen N, Walton JGA, Bradley M. Peptides for cell-selective drug delivery. Trends Pharmacol Sci. 2012;33(4):186–92.

    Article  CAS  Google Scholar 

  4. Sanzhakov MA, Ignatov DV, Kostryukova LV, Druzhilovskaya OS, Medvedeva NV. The in vivo study of the medicinal composition property of doxorubicin as a part of colloidal nanoparticles with the address fragment. J Biomed Chem. 2016;62(2):150–3.

    CAS  Google Scholar 

  5. Zhang F, Xue J, Shao J, et al. Compilation of 222 drugs’ plasma protein binding data and guidance for study designs. Drug Discov Today. 2012;17(9/10):475–85.

    Article  CAS  Google Scholar 

  6. Chauhan S, Singh K, Kumar K, et al. Drug−amino acid interactions in aqueous medium: volumetric, compressibility, and viscometric studies. J Chem Eng Data. 2016;61(2):788–96.

    Article  CAS  Google Scholar 

  7. Nain AK, Pal R, Droliya P. Study of (solute + solute) and (solute + solvent) interactions of homologous series of some α-amino acids in aqueous-streptomycin sulfate solutions at different temperatures by using physicochemical methods. J Chem Thermodyn. 2016;95:77–98.

    Article  CAS  Google Scholar 

  8. Zhang J, Zhu C, Ma Y. Volumetric and viscometric properties of amino acids in aqueous maltitol solutions at T = (293.15–323.15) K. J Chem Thermodyn. 2017;111:52–64.

    Article  CAS  Google Scholar 

  9. Lianga P, Zhengb J, Daia Sh, et al. pH triggered re-assembly of nanosphere to nanofiber: the role of peptide conformational change for enhanced cancer therapy. J Control Release. 2017;260:22–31.

    Article  Google Scholar 

  10. Gratacys-Cubarsn M, Srraga C, Castellari M, et al. Effect of pH (24h), curing salts and muscle types on the oxidative stability, free amino acids profile and vitamin B2, B3 and B6 content of dry-cured ham. Food Chem. 2013;141(3):3207–14.

    Article  Google Scholar 

  11. Ahmad I, Anwar Z, Ali SA, et al. Ionic strength effects on the photodegradation reactions of riboflavin in aqueous solution. J Photochem Photobiol B Biol. 2016;157:113–9.

    Article  CAS  Google Scholar 

  12. Brennan LA, Kantorow M. Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations. Exp Eye Res. 2009;88(2):195–203.

    Article  CAS  Google Scholar 

  13. Sunkireddya P, Jhab SN, Kanwarc JR, Yadav SC. Natural antioxidant biomolecules promises future nanomedicine based therapy for cataract. Coll Surf B Biointerfaces. 2013;112:554–62.

    Article  Google Scholar 

  14. Abdelkadera H, Swinden J, Pierscionek BK, Alany RG. Analytical and physicochemical characterisation of the senile cataract drug dipeptide β-alanyl-L-histidine (carnosine). J Pharm Biomed Anal. 2015;114:241–6.

    Article  Google Scholar 

  15. Buschmann HJ, Schollmeyer E. A test reaction from macrocyclic chemistry for calorimetric titrations. Thermochim Acta. 1999;333(1):49–53.

    Article  CAS  Google Scholar 

  16. Castronuovo G, Elia V, Giancola C, Puzziello S. Chiral interaction in aqueous solutions of aminoacids: a calorimetric study of the protonated forms in H2O-HCI mixed solvents at 25 °C. J Solut Chem. 1990;19:855–66.

    Article  CAS  Google Scholar 

  17. Lytkin AI, Barannikov VP, Badelin VG, Krutova ON. Enthalpies of acid dissociation of L-carnosine in aqueous solution. J Therm Anal Calorim. 2019;139:3683–9.

    Article  Google Scholar 

  18. Lytkin AI, Badelin VG, Krutova ON, Tyunina EYu, Krutov PD. Thermochemistry of the acid-base interactions in aqueous solutions of isonicotinic and picolinic acids. Rus J Gen Chem. 2019;89(11):2235–8.

    Article  CAS  Google Scholar 

  19. Tyunina EYu, Krutova ON, Lytkin AI. Determination of the complexation parameters of L-asparagine with some biologically active pyridine derivatives in aqueous solutions from calorimetric results. Thermochim Acta. 2020. https://doi.org/10.1016/j.tca.2020.178704.

    Article  Google Scholar 

  20. Vasil’ev, VP, Borodin VA, Kozlovskii EV. Primenenie EVM v khimiko-analiticheskikh raschetakh (Use of computers in chemical analytical calculations). Moscow: Vysshaya Shkola, 1993; 81(in Russian).

  21. Barone G, Cacace P, Castronuovo G, Elia V. Excess enthalpies of aqueous solutions of biuret at 25 °C. Interact Urea Can J Chem. 1981;59:1257–60.

    CAS  Google Scholar 

  22. Barone G, Castronuovo G, Del Vecchio P, Giancola C. The peptide-urea interaction: excess enthalpies of aqueous solutions of N-acetylamides of amino acids and urea at 298.15 K. J Chem Soc Faraday Trans I. 1989;85(8):2087–97.

    Article  CAS  Google Scholar 

  23. Kustov AV, Korolev VP. Temperature dependence of the interaction between hydrophobic and hydrophilic solutes: a calorimetric study. Thermochim Acta. 2005;437:190–5.

    Article  Google Scholar 

  24. Kustov AV, Smirnova NL. Temperature and length scale dependence of tetraalkylammonium ion solvation in water, formamide, and ethylene glycol. J Phys Chem B. 2011;115:14551–5.

    Article  CAS  Google Scholar 

  25. Mezhevoi IN, Badelin VG. Thermochemical analysis of intermolecular interactions between N-acetylglycine and polyols in aqueous solutions. Rus J of Phys Chem A. 2017;91(5):810–3.

    Article  CAS  Google Scholar 

  26. Ivanov EV, Batov DV. Enthalpy-related parameters of interaction of simplest a-amino acids with the pharmaceutical mebicar (N-tetramethylglycoluril) in water at 298.15 K. J Chem Thermodyn. 2019;128:159–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The calorimetric measurements were carried out at the Institute of Thermodynamics and Kinetics of Chemical Processes of the Ivanovo State University of Chemistry and Technology (ISUCT) using the equipment of the Centre for Collective Use of ISUCT. The study was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Project FZZW-2020-0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Krutova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krutova, O.N., Usacheva, T.R., Myshenkov, M.S. et al. Thermochemical analysis of intermolecular interactions of L-carnosine with isonicotinic acid in aqueous solutions. J Therm Anal Calorim 147, 6461–6467 (2022). https://doi.org/10.1007/s10973-021-10982-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10982-1

Keywords

Navigation