Skip to main content
Log in

Thermal-hydraulic investigation on micro heat sinks with ribbed pin-fin arrays and single heating input: parametrical study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The electronic devices are facing the challenge of high heat flux. To improve the thermal and hydraulic performance of micro heat sinks with ribbed pin-fins and single heating input, the geometrical parameters, including shapes, arrangements, width and height, are numerically investigated. The results show that the micro heat sinks with arc ribbed pin-fins exhibit the best comprehensive performance comparing with triangle and rectangle ribbed pin-fins. Meanwhile, even for the single heating input, the staggered ribs arrangement exhibits better comprehensive performance than that of the in-line ribs arrangement the same Reynolds number. Moreover, the average Nu number increases first and then decreases with the increase in the rib width. At Re = 1342, the average Nusselt number of Dp/D0 = 1/2 can reach up 44.3, which is 1.8 times of Dp/D0 = 3/2. Increasing the Hp/H0 plays a positive effect on improving thermal performance but with higher pressure loss. At higher Hp/H0, increasing Hp/H0 does not show obvious effect on reduction total thermal resistance under the same pump power. To better balance the thermal resistance and pressure drop, the value of Dp/D0 and Hp/H0 should be chosen properly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. He Z, Yan Y, Zhang Z. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: a review. Energy. 2021. https://doi.org/10.1016/j.energy.2020.119223.

    Article  Google Scholar 

  2. He Z, Yan Y, Feng S, Yang Z, Zhang L, Zhang Z. Multi-objective optimizations on thermal and hydraulic performance of symmetric and asymmetric bionic Y-shaped fractal networks by genetic algorithm coupled with CFD simulation. Int Commun Heat Mass Transf. 2021. https://doi.org/10.1016/j.icheatmasstransfer.2021.105261.

    Article  Google Scholar 

  3. Yan Y, Yan H, Yin S, Zhang L, Li L. Single/multi-objective optimizations on hydraulic and thermal management in micro-channel heat sink with bionic Y-shaped fractal network by genetic algorithm coupled with numerical simulation. Int J Heat Mass Transf. 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.120.

    Article  Google Scholar 

  4. Tuckerman D, Pease R. High-performance heat sinking for VLSI. IEEE Electr Dev Lett. 1981. https://doi.org/10.1109/EDL.1981.25367.

    Article  Google Scholar 

  5. Bahiraei M, Heshmatian S. Electronics cooling with nanofluids: a critical review. Energy Convers Manag. 2018. https://doi.org/10.1016/j.enconman.2018.07.047.

    Article  Google Scholar 

  6. Zhang Z, Cai J, Chen F, Li H, Zhang W, Qi W. Progress in enhancement of CO2 absorption by nanofluids: a mini review of mechanisms and current status. Renew Energy. 2018. https://doi.org/10.1016/j.renene.2017.11.031.

    Article  Google Scholar 

  7. Junankar AA, Parate SR, Dethe PK, Dhote NR, Gadkar DG, Gadkar DD, Gajbhiye SA. A review: enhancement of turning process performance by effective utilization of hybrid nanofluid and MQL. Mater Today Proc. 2020. https://doi.org/10.1016/j.matpr.2020.05.603.

    Article  Google Scholar 

  8. Ellahi R, Hassan M, Zeeshan A, Khan AA. The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection. Appl Nanosci. 2016;6:641–51. https://doi.org/10.1007/s13204-015-0481-z.

    Article  CAS  Google Scholar 

  9. Feng S, Yan Y, Li H, He Z, Zhang L. Temperature uniformity enhancement and flow characteristics of embedded gradient distribution micro pin fin arrays using dielectric coolant for direct intra-chip cooling. Int J Heat Mass Transf. 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120235.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Promvonge P, Chompookham T, Kwankaomeng S, Thianpong C. Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators. Energy Convers Manag. 2010. https://doi.org/10.1016/j.enconman.2009.12.035.

    Article  Google Scholar 

  11. Awais M, Bhuiyan AA. Enhancement of thermal and hydraulic performance of compact finned-tube heat exchanger using vortex generators (VGs): a parametric study. Int J Therm Sci. 2019. https://doi.org/10.1016/j.ijthermalsci.2019.02.041.

    Article  Google Scholar 

  12. Amini Y, Akhavan S, Izadpanah E. A numerical investigation on the heat transfer characteristics of nanofluid flow in a three-dimensional microchannel with harmonic rotating vortex generators. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08402-6.

    Article  Google Scholar 

  13. Dezan DJ, Yanagihara JI, Jenovencio G, Salviano LO. Parametric investigation of heat transfer enhancement and pressure loss in louvered fins with longitudinal vortex generators. Int J Therm Sci. 2019. https://doi.org/10.1016/j.ijthermalsci.2018.09.039.

    Article  Google Scholar 

  14. Raihan MFB, Al-Asadi MT, Thompson HM. Management of conjugate heat transfer using various arrangements of cylindrical vortex generators in micro-channels. Appl Therm Eng. 2021. https://doi.org/10.1016/j.applthermaleng.2020.116097.

    Article  Google Scholar 

  15. Lorenzini D, Green C, Sarvey TE, Zhang X, Hu Y, Fedorov AG, Bakir MS, Joshi Y. Embedded single phase microfluidic thermal management for non-uniform heating and hotspots using microgaps with variable pin fin clustering. Int J Heat Mass Transf. 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.040.

    Article  Google Scholar 

  16. Feng S, Yan Y, Li H, Yang Z, Li L, Zhang L. Theoretical and numerical investigation of embedded microfluidic thermal management using gradient distribution micro pin fin arrays. Appl Therm Eng. 2019;153:748–60. https://doi.org/10.1016/j.applthermaleng.2019.03.017.

    Article  CAS  Google Scholar 

  17. He Z, Yan Y, Xu F, Yang Z, Cui H, Wu Z, et al. Combustion characteristics and thermal enhancement of premixed hydrogen/air in micro combustor with pin fin arrays. Int J Hydrog Energy. 2020. https://doi.org/10.1016/j.ijhydene.2019.12.093.

    Article  Google Scholar 

  18. He Y, Liu L, Li P, Ma L. Experimental study on heat transfer enhancement characteristics of tube with cross hollow twisted tape inserts. Appl Therm Eng. 2018. https://doi.org/10.1016/j.applthermaleng.2017.12.029.

    Article  Google Scholar 

  19. Li P, Liu Z, Liu W, Chen G. Numerical study on heat transfer enhancement characteristics of tube inserted with centrally hollow narrow twisted tapes. Int J Heat Mass Transf. 2015. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.103.

    Article  Google Scholar 

  20. Razavi SE, Osanloo B, Sajedi R. Application of splitter plate on the modification of hydro-thermal behavior of PPFHS. Appl Therm Eng. 2015. https://doi.org/10.1016/j.applthermaleng.2015.01.046.

    Article  Google Scholar 

  21. Sajedi R, Osanloo B, Talati F, Taghilou M. Splitter plate application on the circular and square pin fin heat sinks. Microelectron Reliab. 2016;62:91–101. https://doi.org/10.1016/j.microrel.2016.03.026.

    Article  Google Scholar 

  22. Ghachem K, Aich W, Kolsi L. Computational analysis of hybrid nanofluid enhanced heat transfer in cross flow micro heat exchanger with rectangular wavy channels. Case Stud Therm Eng. 2021. https://doi.org/10.1016/j.csite.2020.100822.

    Article  Google Scholar 

  23. Chiam ZL, Lee PS, Singh PK, Mou N. Investigation of fluid flow and heat transfer in wavy micro-channels with alternating secondary branches. Int J Heat Mass Transf. 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.097.

    Article  Google Scholar 

  24. Chen M, Wang Y, Liu Z. Experimental study on micro-encapsulated phase change material slurry flowing in straight and wavy microchannels. Appl Therm Eng. 2021. https://doi.org/10.1016/j.applthermaleng.2021.116841.

    Article  Google Scholar 

  25. Wan W, Deng D, Huang Q, Zeng T, Huang Y. Experimental study and optimization of pin fin shapes in flow boiling of micro pin fin heat sinks. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2016.11.182.

    Article  Google Scholar 

  26. Li Y, Gong L, Xu M, Joshi Y. Hydraulic and thermal performances of metal foam and pin fin hybrid heat sink. Appl Therm Eng. 2020. https://doi.org/10.1016/j.applthermaleng.2019.114665.

    Article  Google Scholar 

  27. Woodcock C, Ng’oma C, Sweet M, Wang Y, Peles Y, Plawsky J. Ultra-high heat flux dissipation with Piranha Pin Fins. Int J Heat Mass Transfer. 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.030.

    Article  Google Scholar 

  28. Zhang Y, Dembla A, Bakir MS. Silicon micropin-fin heat sink with integrated TSVs for 3-D ICs: tradeoff analysis and experimental testing. IEEE T Compon Pack Man. 2013. https://doi.org/10.1109/TCPMT.2013.2267492.

    Article  Google Scholar 

  29. Lee S, Schroder DK, Inc BS, Beaverton OR. 3D IC architecture for high density memories. IEEE Int Memory Workshop. https://doi.org/10.1109/IMW.2010.5488391.

  30. Sidik NAC, Muhamad MNAW, Japar WMAA, Rasid ZA. An overview of passive techniques for heat transfer augmentation in microchannel heat sink. Int Commun Heat Mass Transf. 2017. https://doi.org/10.1016/j.icheatmasstransfer.2017.08.009.

    Article  Google Scholar 

  31. Mohammed HA, Gunnasegaran P, Shuaib NH. Numerical simulation of heat transfer enhancement in wavy microchannel heat sink. Int Commun Heat Mass Transf. 2011. https://doi.org/10.1016/j.icheatmasstransfer.2010.09.012.

    Article  Google Scholar 

  32. Zhao J, Huang S, Gong L, Huang Z. Numerical study and optimizing on micro square pin-fin heat sink for electronic cooling. Appl Therm Eng. 2016. https://doi.org/10.1016/j.applthermaleng.2015.08.105.

    Article  Google Scholar 

  33. Keshavarz F, Mirabdolah Lavasani A, Bayat H. Numerical analysis of effect of nanofluid and fin distribution density on thermal and hydraulic performance of a heat sink with drop-shaped micropin fins. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7711-z.

    Article  Google Scholar 

  34. Marschewski J, Brechbühler R, Jung S, Ruch P, Michel B, Poulikakos D. Significant heat transfer enhancement in microchannels with herringbone-inspired microstructures. Int J Heat Mass Transf. 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.039.

    Article  Google Scholar 

  35. Yan Y, Yan H, Feng S, Li LX. Thermal-hydraulic performances and synergy effect between heat and flow distribution in a truncated doubled-layered heat sink with Y-shaped fractal network. Int J Heat Mass Transf. 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.093.

    Article  Google Scholar 

  36. Chiu H, Hsieh R, Wang K, Jang J, Yu C. The heat transfer characteristics of liquid cooling heat sink with micro pin fins. Int Commun Heat Mass Transf. 2017. https://doi.org/10.1016/j.icheatmasstransfer.2017.05.027.

    Article  Google Scholar 

  37. Yang D, Wang Y, Ding G, Jin Z, Zhao J, Wang G. Numerical and experimental analysis of cooling performance of single-phase array microchannel heat sinks with different pin-fin configurations. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2016.08.211.

    Article  Google Scholar 

  38. Wang W, Zhang Y, Li Y, Han H, Li B. Multi-objective optimization of turbulent heat transfer flow in novel outward helically corrugated tubes. Appl Therm Eng. 2018. https://doi.org/10.1016/j.applthermaleng.2017.12.080.

    Article  Google Scholar 

  39. Wang G, Qi C, Liu M, Li C, Yan Y, Liang L. Effect of corrugation pitch on thermo-hydraulic performance of nanofluids in corrugated tubes of heat exchanger system based on exergy efficiency. Energy Convers Manag. 2019. https://doi.org/10.1016/j.enconman.2019.02.046.

    Article  Google Scholar 

  40. Yang C, Chen M-R, Qian J-Y, Zan W, Jin Z-J, Sunden B. Heat transfer study of a hybrid smooth and spirally corrugated tube. Heat Transf Eng. 2019. https://doi.org/10.1080/01457632.2019.1699292.

    Article  Google Scholar 

  41. Wang W, Zhang Y, Li Y, Han H, Li B. Numerical study on fully-developed turbulent flow and heat transfer in inward corrugated tubes with double-objective optimization. Int J Heat Mass Transf. 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.079.

    Article  Google Scholar 

  42. He Z, Yan Y, Feng S, Li X, Yang Z. Numerical study of thermal enhancement in a micro-heat sink with ribbed pin-fin arrays. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09739-z.

    Article  Google Scholar 

  43. Ansari D, Kim K-Y. Hotspot thermal management using a microchannel-pinfin hybrid heat sink. Int J Therm Sci. 2018. https://doi.org/10.1016/j.ijthermalsci.2018.07.043.

    Article  Google Scholar 

  44. Klank H, Goranovic G, Kutter JP, Gjelstrup H, Michelsen J, Westergaard CH. PIV measurements in a microfluidic 3D-sheathing structure with three-dimensional flow behaviour. J Micromech Microeng. 2002. https://doi.org/10.1088/0960-1317/12/6/318.

    Article  Google Scholar 

  45. Kumar V, Paraschivoiu M, Nigam KDP. Single-phase fluid flow and mixing in microchannels. Chem Eng Sci. 2011. https://doi.org/10.1016/j.ces.2010.08.016.

    Article  Google Scholar 

  46. Falsetti C, Magnini M, Thome JR. Hydrodynamic and thermal analysis of a micro-pin fin evaporator for on-chip two-phase cooling of high density power micro-electronics. Appl Therm Eng. 2018. https://doi.org/10.1016/j.applthermaleng.2017.10.117.

    Article  Google Scholar 

  47. Khan WA, Culham JR, Yovanovich MM. Optimization of pin-fin heat sinks using entropy generation minimization. IEEE Trans Compon Packag Technol. 2005. https://doi.org/10.1109/TCAPT.2005.848507.

    Article  Google Scholar 

  48. Chai L, Xia GD, Wang HS. Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls—part 3: performance evaluation. Int J Heat Mass Transf. 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.075.

    Article  Google Scholar 

  49. Gong L, Zhao J, Huang S. Numerical study on layout of micro-channel heat sink for thermal management of electronic devices. Appl Therm Eng. 2015. https://doi.org/10.1016/j.applthermaleng.2014.09.048.

    Article  Google Scholar 

  50. Li YF, Xia GD, Ma DD, Jia YT, Wang J. Characteristics of laminar flow and heat transfer in microchannel heat sink with triangular cavities and rectangular ribs. Int J Heat Mass Transf. 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.022.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Joint Fund of the National Natural Science Foundation of China and China Aerospace Science and Technology Corporation on Advanced Manufacturing Technology for Aerospace Industry (U1737113), Graduate Research and Innovation Foundation of Chongqing (CYB20019), Fundamental Research Funds for the Central Universities (2019CDYGYB022) and Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfei Yan.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Yan, Y. & Zhang, L. Thermal-hydraulic investigation on micro heat sinks with ribbed pin-fin arrays and single heating input: parametrical study. J Therm Anal Calorim 147, 6489–6505 (2022). https://doi.org/10.1007/s10973-021-10977-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10977-y

Keywords

Navigation