Skip to main content
Log in

Thermal decomposition characteristics of low-grade rhodochrosite ore in N2, CO2 and air atmosphere

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Roasting is an essential process before ammonia leaching of low-grade rhodochrosite ore. Thermal decomposition characteristics and phase transformation rules of low-grade rhodochrosite ore with a particle size of less than 74 µm in N2, CO2 and air were studied. MnCO3, MgCO3 and CaCO3 in rhodochrosite are decomposed into MnO, MgO and CaO at 339 ℃, 306 ℃ and 842 ℃, respectively. MnO is oxidized to MnO2, Mn2O3 and Mn3O4 at 339 ℃, 533 ℃ and 1005 ℃, respectively. The TG/DTA and phase transformation results indicated that by thermal decomposition of rhodochrosite ore in air, N2 and CO2, MnCO3 is converted into Mn2O3, MnO and MnO, respectively. MnCO3 is converted to MnO at a higher temperature in a carbon dioxide atmosphere (512 ℃) than in a nitrogen atmosphere (400 ℃).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen G, Li L, Tao C, Liu Z, Chen N, Peng J. Effects of microwave heating on microstructures and structure properties of the manganese ore. J Alloy Compd. 2016;657:515–8.

    Article  CAS  Google Scholar 

  2. Kholmogorov A, Zhyzhaev A, Kononov U, Moiseeva G, Pashkov G. The production of manganese dioxide from manganese ores of some deposits of the Siberian region of Russia. Hydrometallurgy. 2000;56(1):1–11.

    Article  CAS  Google Scholar 

  3. Xin B, Li T, Li X, Dan Z, Xu F, Duan N, et al. Reductive dissolution of manganese from manganese dioxide ore by autotrophic mixed culture under aerobic conditions. J Clean Prod. 2015;92:54–64.

    Article  CAS  Google Scholar 

  4. Faria GLd, Tenório JAS, Jannotti N Jr, Araújo FdS. Disintegration on heating of a Brazilian manganese lump ore. Int J Miner Process. 2013;124:132–7.

    Article  CAS  Google Scholar 

  5. Qing T, Zhong H, Shuai W, Li J, Liu G. Reductive leaching of manganese oxide ores using waste tea as reductant in sulfuric acid solution. Trans Nonferrous Metals Soc China. 2014;24(3):861–7.

    Article  Google Scholar 

  6. Figueira B, Angélica R, da Costa M, Pöllmann H, Schenzel K. Conversion of different Brazilian manganese ores and residues into birnessite-like phyllomanganate. Appl Clay Sci. 2013;86:54–8.

    Article  CAS  Google Scholar 

  7. Yan W. Development of manganese ore resources and manganese slag industry in China. Abstr Chin Acad J. 2008;26:7–11.

    Google Scholar 

  8. Kanungo S, Mishra S. Dephosphorization of high-phosphorous manganese ores from Andhra Pradesh and southern Orissa, India, by roasting. Miner Metall Process. 2000;17(1):37–40.

    CAS  Google Scholar 

  9. Kanungo S, Sant B. Dephosphorization of P-rich Mn ores by selective leaching with dilute H2SO4. Proc Austral Inst Min Met. 1974;250:17–23.

    CAS  Google Scholar 

  10. Kanungo S, Mishra S. Reduction of phosphorus content of certain high phosphorus manganese ores of india by roasting with sodium chloride followed by leaching in acid medium. I: Statistical design of roasting experiments. Trans Indian Inst Metals. 2002;55(3):81–9.

    CAS  Google Scholar 

  11. Liu Y, Lin Q, Li L, Fu J, Zhu Z, Wang C, et al. Study on hydrometallurgical process and kinetics of manganese extraction from low-grade manganese carbonate ores. Int J Min Sci Technol. 2014;24(4):567–71.

    Article  CAS  Google Scholar 

  12. Arsent’ev V. Correlation between kinetic characteristic and surface effects manganese pulsed leaching in heterophase medium. Obogashch Rud. 1993;1–2:7–9.

    Google Scholar 

  13. Arsent’ev V, Kiselev K, Ryl’kov S, Sokolova V. Experimental processing of Vorkutinsk manganese ores by hydrometallurgical methods. Obogashchenie Rud. 1992;6:17–8.

    Google Scholar 

  14. Radmehr V, Koleini SMJ, Khalesi MR, Mohammadi MRT. Ammonia leaching: a new approach of copper industry in hydrometallurgical processes. J Inst Eng (India) Ser D. 2013;94(2):95–104.

    Article  Google Scholar 

  15. Zhang W, Cheng CY. Manganese metallurgy review. Part I: leaching of ores/secondary materials and recovery of electrolytic/chemical manganese dioxide. Hydrometallurgy. 2007;89(3):137–59.

    Article  CAS  Google Scholar 

  16. Liu B, Zhang Y, Su Z, Lu M, Peng Z, Li G, et al. Formation mechanism of MnxFe3−xO4 by solid-state reaction of MnO2 and Fe2O3 in air atmosphere: morphologies and properties evolution. Powder Technol. 2017;313:201–9.

    Article  CAS  Google Scholar 

  17. El-Shobaky G, El-Barawy K. Effects of lithium doping on the thermal decomposition of manganese carbonate. Thermochim Acta. 1985;89:53–61.

    Article  CAS  Google Scholar 

  18. El-Shobaky G, El-Barawy K, Ibrahim A. Thermal solid-solid interaction between potassium and manganese oxides. Thermochim Acta. 1986;102:21–7.

    Article  CAS  Google Scholar 

  19. Vračar RŽ, Cerović KP. Manganese leaching in the FeS2–MnO2–O2–H2O system at high temperature in an autoclave. Hydrometallurgy. 2000;55(1):79–92.

    Article  Google Scholar 

  20. Senanayake G. A mixed surface reaction kinetic model for the reductive leaching of manganese dioxide with acidic sulfur dioxide. Hydrometallurgy. 2004;73(3–4):215–24.

    Article  CAS  Google Scholar 

  21. Su H, Wen Y, Wang F, Li X, Tong Z. Leaching of pyrolusite using molasses alcohol wastewater as a reductant. Miner Eng. 2009;22(2):207–9.

    Article  CAS  Google Scholar 

  22. Song J, Zhu G, Zhao Y, Zhang P. Reduction treatment of low-grade manganese ore by biomass roasting. Acta Metall Sin (Engl Lett). 2010;23(3):223–9.

    CAS  Google Scholar 

  23. Zhang H, Zhu G, Yan H, Zhao Y, Li T, Feng X. Reduction of low-grade manganese dioxide ore pellets by biomass wheat stalk. Acta Metall Sin (Engl Lett). 2013;26(2):167–72.

    Article  CAS  Google Scholar 

  24. Yang Z-p, Jin X-z, Zhu G-c. Study on the process of low grade manganese ore treated by ammonium calcination. China’s Mang Ind. 2006;3:12–4.

    Google Scholar 

  25. Jin X, Yang Z, Chen Z, Ma Y. Study on technology of low grade Manganese carbonate ore roasting by salt to enrich manganese. China’s Mang Ind. 2006;24:33–4.

    Google Scholar 

  26. Dollimore D, Tonge K. In HG Weidemann (Ed.), 3rd Int. Conf. Thermal Analysis Davois, 1971. Birkhaeuser, Basel; 1972.

  27. Algoufi Y, Kabir G, Hameed B. Synthesis of glycerol carbonate from biodiesel by-product glycerol over calcined dolomite. J Taiwan Inst Chem Eng. 2017;70:179–87.

    Article  CAS  Google Scholar 

  28. Nur ZS, Taufiq-Yap Y, Nizah MR, Teo SH, Syazwani O, Islam A. Production of biodiesel from palm oil using modified Malaysian natural dolomites. Energy Convers Manag. 2014;78:738–44.

    Article  Google Scholar 

  29. Youssef N, Farid T, Selim M. Decomposition of hydrogen peroxide over pure and mixed copper oxide and manganese oxide prepared from carbonates. Commun Fac Sci Univ Ank Ser B. 1993;38:33–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Z., Liang, X., Wu, C. et al. Thermal decomposition characteristics of low-grade rhodochrosite ore in N2, CO2 and air atmosphere. J Therm Anal Calorim 147, 6481–6488 (2022). https://doi.org/10.1007/s10973-021-10974-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10974-1

Keywords

Navigation