Skip to main content
Log in

Effect of overall charge and local charge density of pectin on the structure and thermal stability of lysozyme

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, effects of pectin varying in overall charge (OCH) and local charge density (LCD) on the structure and thermal stability of Lysozyme (lys) are studied. The secondary and local tertiary structures of lys undergo at pH 5.1 a two-step change upon binding with increasing amounts of pectin, in which the peak of fluorescence first increases and shows a blue shift and the amount of helix conformation drops at a pectin/lys mass ratio (q) below or equal to that corresponding to maximal complexation qmax. With increasing amount of pectin, the native like state is recovered at q > qmax. The decrease in helix content depends mainly on the OCH of pectin. Analysis of the thermodenaturation behavior of lys reveals that affinity of pectin with denatured lys is higher than for the native state of lys. At the same OCH of pectin, unfolding of lys is more significant in case of a high LCD (blockwise distribution of charges) of the former. At q = qmax (first stage of binding) the key factors stabilizing lys within its complexes with pectin against thermo-aggregation are a high LCH of pectin and, to a lesser degree, a low OCH. At q >  > qmax (second stage of binding), a high LCH of pectin is a key factor inhibiting thermo-aggregation of lys.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang Y, Gao JY, Dubin PL. Protein separation via polyelectrolyte coacervation: selectivity and efficiency. Biotechnol Prog. 1996;12:356–62.

    Article  CAS  Google Scholar 

  2. Dubin PL, Gao J, Mattison K. Protein purification by selective phase separation with polyelectrolytes. Separat Purif Methods. 1994;23:1–16. https://doi.org/10.1080/03602549408001288.

    Article  CAS  Google Scholar 

  3. Strege MA, Dubin PL, West JS, Flinta CD. Protein separation via polyelectrolyte coacervation. In: Ladisch M, Wilson RC, Painton CC, Builder SE (eds) Protein purification: from molecular mechanisms to large-scale processes (chapter5). Washington: ACS; 1990.

  4. Antonov YA, Grinberg VY, Zhuravskaya NA, Tolstoguzov VB. Concentration of the proteins of the skimmed milk by membraneless, isobaric osmosis. Carbohydr Polym. 1982;2:81–90. https://doi.org/10.1016/0144-8617(82)90054-6.

    Article  CAS  Google Scholar 

  5. Ruckpaul K, Rein H, Jänig GR, Pfeil W, Ristau O, Damaschun B, Damaschun H, Müller JJ, Bleke J, Scheler W. Interaction of hemoglobin with ions: effect of heparin on the oxygen affinity of adult human hemoglobin. Stud Biophys. 1972;34:81–6.

    CAS  Google Scholar 

  6. Kabanov VA. Basic properties of soluble interpolyelectrolyte complexes applied to bioengineering and cell transformations. In: Dubin P, Bock J, Davis R, Schulz DN, Thies C, editors. Macromolecular complexes in chemistry and biology. New York: Springer; 1994. p. 151–74.

    Chapter  Google Scholar 

  7. Tribet C. Complexation between amphiphilic polyelectrolytes and proteins: from necklaces to gels. In: Radeva T, editor. Physical chemistry of polyelectrolytes. New York: Marcel Dekker; 2001. p. 687–741.

    Google Scholar 

  8. Park JM, Muhoberac BB, Dubin PL, Xia J. Effects of protein charge heterogeneity in protein-polyelectrolyte complexation. Macromolecules. 1992;25:290–5. https://doi.org/10.1021/ma00027a047.

    Article  CAS  Google Scholar 

  9. Li Y, Mattison KW, Dubin PL, Havel HA, Edwards SL. Light scattering studies of the binding of bovine serum albumin to a cationic polyelectrolyte. Biopolymers. 1996;38:527–33.

    Article  CAS  Google Scholar 

  10. Matsunami H, Kikuchi R, Ogawa K, Kokufuta E. Light scattering study of complex formation between protein and polyelectrolyte at various ionic strengths. Colloids Surf B. 2007;56:142–8. https://doi.org/10.1016/j.colsurfb.2006.10.003.

    Article  CAS  Google Scholar 

  11. Takahashi D, Kubota Y, Kokai K, Izumi T, Hirata M, Kokufuta E. Effects of surface charge distribution of proteins in their complexation with polyelectrolytes in an aqueous salt-free system. Langmuir. 2000;16:3133–40. https://doi.org/10.1021/la991108z.

    Article  CAS  Google Scholar 

  12. Cousin F, Gummel J, Ung D, Boué F. Polyelectrolyte-protein complexes: structure and conformation of each specie revealed by SANS. Langmuir. 2005;21:9675–88. https://doi.org/10.1021/la0510174.

    Article  CAS  PubMed  Google Scholar 

  13. Gummel J, Cousin F, Boué F. Counterions release from electrostatic complexes of polyelectrolytes and proteins of opposite charge: a direct measurement. J Am Chem Soc. 2007;129:5806–7. https://doi.org/10.1021/la0510174.

    Article  CAS  PubMed  Google Scholar 

  14. Seyrek E, Dubin PL, Tribet C, Gamble EA. Ionic strength dependence of protein-polyelectrolyte interactions. Biomacromol. 2003;4:273–82. https://doi.org/10.1021/bm025664a.

    Article  CAS  Google Scholar 

  15. Kayitmazer AB, Strand SP, Tribet CW, Jaeger W, Dubin PL. Effect of polyelectrolyte structure on protein-polyelectrolyte coacervates: coacervates of bovine serum albumin with poly(diallyldimethylammonium chloride) vs. chitosan. Biomacromolecules. 2007;8:3568–3577. https://doi.org/10.1021/bm700645t.

  16. Topuzoğullari M, Çimen NS, Mustafaeva Z, Mustafaev M. Molecular-weight distribution and structural transformation in water-soluble complexes of poly (acrylic acid) and bovine serum albumin. Eur Polym J. 2007;43:2935–46. https://doi.org/10.1016/j.eurpolymj.2007.04.025.

    Article  CAS  Google Scholar 

  17. Antonov YA, Wolf BA. Calorimetric and structural investigation of the interaction between bovine serum albumin and high molecular weight dextran in water. Biomacromol. 2005;6:2980–9. https://doi.org/10.1021/bm050279h.

    Article  CAS  Google Scholar 

  18. Ladd J, Zhang Z, Chen S, Hower JC, Jiang S. Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromol. 2008;9(5):1357–61. https://doi.org/10.1021/bm701301s.

    Article  CAS  Google Scholar 

  19. Li Y, de Vries R, Kleijn M, Slaghek T, Timmermans J, Stuart MC, Norde W. Lysozyme uptake by oxidized starch polymer microgels. Biomacromol. 2010;11(7):1754–62. https://doi.org/10.1021/bm100206k.

    Article  CAS  Google Scholar 

  20. Zhulina EB, Leermakers FAM. On the polyelectrolyte brush model of neurofilaments. Soft Matter. 2009;5:2836–40. https://doi.org/10.1039/b903683k.

    Article  CAS  Google Scholar 

  21. Antonov YA, Sato T. Macromolecular complexes of the main storage protein of Vicia faba seeds with sulfated polysaccharide. Food Hydrocoll. 2009;23:996–1006. https://doi.org/10.1016/j.foodhyd.2008.07.012.

    Article  CAS  Google Scholar 

  22. Antonov YA, Moldenaers P. Inducing demixing of semidilute and highly compatible biopolymer mixtures in the presence of a strong polyelectrolyte. Biomacromol. 2009;10:3235–45. https://doi.org/10.1021/bm9007887.

    Article  CAS  Google Scholar 

  23. Antonov YA, Zhuravleva IL, Cardinaels R, Moldenaers P. Macromolecular complexes of lysozyme with dextran sulfate. Food Hydrocoll. 2015;44:71–80. https://doi.org/10.1016/j.foodhyd.2017.07.022.

    Article  CAS  Google Scholar 

  24. Antonov YA, Moldenaers P, Cardinaels R. Complexation of lysozyme with sodium caseinate and micellar casein in aqueous buffered solutions. Food Hydrocoll. 2017;62:102–18. https://doi.org/10.1016/j.foodhyd.2016.07.012.

    Article  CAS  Google Scholar 

  25. Antonov YA, Cardinaels R, Moldenaers P. Specific effect of the linear charge density of the acid polysaccharide on thermal aggregation/disaggregation processes in complex carrageenan/lysozyme systems. Food Hydrocoll. 2017;70:8–13. https://doi.org/10.1016/j.foodhyd.2017.03.017.

    Article  CAS  Google Scholar 

  26. Antonov YA, Zhuravleva IL, Volodine A, Moldenaers P, Cardinaels R. Effect of the helix-coil transition in bovine skin gelatin on its associative phase separation with lysozyme. Langmuir. 2017;33(47):13530–42. https://doi.org/10.1021/acs.langmuir.7b01477.

    Article  CAS  PubMed  Google Scholar 

  27. Kayitmazer AB, Seeman D, Minsky BB, Dubin PL, Xu Y. Protein-polyelectrolyte interactions. Soft Matter. 2013;9:2553–83.

    Article  CAS  Google Scholar 

  28. Doublier JL, Garnier C, Renard D, Sanchez C. Protein-polysaccharide Interactions. Curr Opin Colloid Interf Sci. 2000;5:202–14. https://doi.org/10.1016/S1359-0294(00)00054-6.

    Article  CAS  Google Scholar 

  29. Schmitt C, Sanchez C, Desobry-Banon S, Hardy J. Structure and technofunctional properties of protein-polysaccharide complexes: a review. Crit Rev Food Sci Nutr. 1998;38(8):689–753. https://doi.org/10.1080/10408699891274354.

    Article  CAS  PubMed  Google Scholar 

  30. Paulikova H, Molnarova M, Podhradsky D. The effect of heparin and pentosanpolysulfate on the thermal stability of yeast alcohol dehydrogenase. Biochem Mol Biol Int. 1998;46:887–94.

    CAS  PubMed  Google Scholar 

  31. Lookene A, Chevreuil O, Ostergaard P, Olivecrona G. Interaction of lipoprotein lipase with heparin fragments and with heparan sulfate (stoichiometry, stabilization, and kinetics). Biochemistry. 1996;35:12155–63. https://doi.org/10.1021/bi960008e.

    Article  CAS  PubMed  Google Scholar 

  32. Volkin DB, Tsai PK, Dabora JM, Gress JO, Burke CJ, Linhardt RJ, Middaugh CR. Physical stabilization of acidic fibroblast growth factor by polyanions. Arch Biochem Biophys. 1993;300:30–41. https://doi.org/10.1006/abbi.1993.1005.

    Article  CAS  PubMed  Google Scholar 

  33. Shareghi B, Farhadian S, Salavati-Niasari M. Spectroscopic studies on the interaction of nano-TiO2 with lysozyme. J Nanostruct. 2012;1:95–103. https://doi.org/10.22052/jns.2017.46711.

    Article  Google Scholar 

  34. Antonov YA, Zhuravleva IL, Cardinaels R, Moldenaers P. Macromolecular complexes of lysozyme with kappa carrageenan. Food Hydrocolloids. 2018;74:227–38. https://doi.org/10.1016/j.foodhyd.2017.07.022.

    Article  CAS  Google Scholar 

  35. Karayianni M, Pispa S, Chryssikos GD, Gionis V, Giatrellis S, Nounesis G. Complexation of Lysozyme with Poly(sodium(sulfamate carboxylate)isoprene). Biomacromol. 2011;12:1697–706. https://doi.org/10.1021/bm200066t.

    Article  CAS  Google Scholar 

  36. James S, McManus JJ. Thermal and solution stability of lysozyme in the presence of sucrose, glucose, and trehalose. J Phys Chem B. 2012;116(34):10182–8. https://doi.org/10.1021/jp303898g.

    Article  CAS  PubMed  Google Scholar 

  37. Blumlein A, McManus JJ. Reversible and non-reversible thermal denaturation of lysozyme with varying pH at low ionic strength. Biochem Biophys Acta. 2013;1834:2064–70. https://doi.org/10.1016/j.bbapap.2013.06.001.

    Article  CAS  PubMed  Google Scholar 

  38. Van de Weert M, Andersen MB, Frokjaer S. Complex coacervation of lysozyme and heparin: complex characterization and protein stability. Pharm Res. 2004;21:2354–9.

    Article  Google Scholar 

  39. Antonov YA, Zhuravleva IL. Complexation of lysozyme with lambda carrageenan: complex characterization and protein stability. Food Hydrocolloids. 2019;87:519–29. https://doi.org/10.1016/j.foodhyd.2018.08.040.

    Article  CAS  Google Scholar 

  40. Sedlak E, Fedunova D, Vesela V, Sedlakova D, Antalík M. Polyanion hydrophobicity and protein basicity affect protein stability in protein-polyanion complexes. Biomacromol. 2009;10:2533–8. https://doi.org/10.1021/bm900480t@proofing.

    Article  CAS  Google Scholar 

  41. Ivinova ON, Izumrudov VA, Muronetz VI, Galaev IY, Mattiasson B. Influence of complexing polyions on the thermostability of basic proteins. Macromol Biosci. 2003;3:210–5.

    Article  CAS  Google Scholar 

  42. Celus M, Kyomugasho C, Kermani Z, Jamsazzadeh R, Katrien VL, Ann M, Grauwet T, Hendrickx ME. Fe2+ adsorption on citrus pectin is influenced by the degree and pattern of methylesterification. Food Hydrocolloids. 2017;73:101–9.

    Article  CAS  Google Scholar 

  43. Aune KC, Tanford C. Thermodynamics of the denaturation of lysozyme by guanidine hydrochloride. I. Dependence on pH at 25 degrees. Biochemistry. 1969;8:4579–4585. https://doi.org/10.1021/bi00839a052.

  44. Unneberg P, Merelo JJ, Chacón P, Morán F. SOMCD: method for evaluating protein secondary structure from UV circular dichroism spectra. Proteins. 2001;42:460–4. https://doi.org/10.1002/1097-0134(20010301)42:4%3c460::aid-prot50%3e3.0.co;2-u.

    Article  CAS  PubMed  Google Scholar 

  45. Li H, Hi Y. Spectroscopic investigation of inner filter effect by magnolol solution. Spectrochimica Acta A. 2007;68:1263–8. https://doi.org/10.1016/j.saa.2007.02.002.

    Article  CAS  Google Scholar 

  46. Filimonov VV, Potekhin SA, Matveev SV, Privalov PL. Thermodynamic analysis of scanning microcalorimetry data. 1. Deconvolution algorithms of complex heat absorption curves. Mol Biol (In Russian). 1982;16:551–562.

  47. Velicelebi G, Sturtevant J. Thermodynamics of the denaturation of lysozyme in alcohol-water mixtures. Biochemistry. 1979;18:1180–6.

    Article  CAS  Google Scholar 

  48. Antonov YA, Celus M, Kyomugasho C, Hendrickx M, Moldenaers P, Cardinaels R. Complexation of pectins varying in overall charge with lysozyme in aqueous buffered solutions. Food Hydrocolloids. 2019;94:268–78. https://doi.org/10.1016/j.foodhyd.2019.02.049.

    Article  CAS  Google Scholar 

  49. Antonov YA, Zhuravleva IL, Celus M, Kyomugasho C, Lombardo S, Thielemans W, Hendrickx M, Moldenaers P, Cardinaels R. Generality and specificity of the binding behaviour of lysozyme with pectin varying in local charge density and overall charge. Food Hydrocolloids. 2020;99:11. https://doi.org/10.1016/j.foodhyd.2019.02.049.

    Article  CAS  Google Scholar 

  50. Greenfield NJ. Using circular dichroism spectra to estimate protein secondary. Struct Nat Protoc. 2007;1:2876–90. https://doi.org/10.1038/nprot.2006.202.

    Article  CAS  Google Scholar 

  51. Bystricky S, Kohn R, Sticzay T, Blaha K. Formation of the poly(Lys-Ala-Ala) complex with pectin of various esterification degree. Collect Czech Chem Commun. 1986;51:1772–80. https://doi.org/10.1135/cccc19861772.

    Article  CAS  Google Scholar 

  52. Woody RW. Circular dichroism. Methods Enzymol. 1995;246:34–71. https://doi.org/10.1016/0076-6879(95)46006-3.

    Article  CAS  PubMed  Google Scholar 

  53. Liu W, Rose J, Plantevin S, Auffan M, Bottero JY, Vidaud C. Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona? Nanoscale. 2013;5:1658–68. https://doi.org/10.1039/c2nr33611a.

    Article  CAS  PubMed  Google Scholar 

  54. Nishimoto E, Yamashita S, Szabo AG, Imoto T. Internal motion of lysozyme studied by time-resolved fluorescence depolarization of tryptophan residues. Biochemistry. 1998;37(16):5599–607. https://doi.org/10.1021/bi9718651.

    Article  CAS  PubMed  Google Scholar 

  55. Narhi LO, Schmit J, Berhtold-Peters K, Sharma D. Classification of protein aggregates. J Pharm Sci. 2012;101:493–8. https://doi.org/10.1002/jps.22790.

    Article  CAS  PubMed  Google Scholar 

  56. Sperber BLHM, Stuart MAC, Schols HA, Voragen AGJ, Norde W. Overall charge and local charge density of pectin determines the enthalpic and entropic contributions to complexation with β-lactoglobulin. Biomacromol. 2010;11:3578–83. https://doi.org/10.1021/bm1010432.

    Article  CAS  Google Scholar 

  57. Jordan RC, Brant DA. Investigation of pectin and pectin acid in dilute aqueous solutions. Biopolymers. 1978;17:2885–95. https://doi.org/10.1002/bip.1978.360171210.

    Article  CAS  Google Scholar 

  58. Zettlmeissl G, Rudolph R, Jaenicke R. Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. I. Physical properties and kinetics of aggregation. Biochemistry. 1979;18:5567–5571.

  59. Manavalan P, Johnson WC. Sensitivity of circular dichroism to protein tertiary structure class. Nature. 1983;305:831–2. https://doi.org/10.1038/305831a0.

    Article  CAS  Google Scholar 

  60. Lad MD, Ledger VM, Briggs B, Green RJ, Frazier RA. Analysis of the SDS-lysozyme binding isotherm. Langmuir. 2003;19:5098–103. https://doi.org/10.1021/la0269560.

    Article  CAS  Google Scholar 

  61. Waldron TT, Murphy KP. Stabilization of proteins by ligand binding: application to drug screening. Biochemistry. 2003;42:5058–64. https://doi.org/10.1021/bi034212v.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Y.A. Antonov is grateful to KU Leuven for financial support from the Soft Matter Rheology and Technology group. We are thankful to Prof. Dr. Mark Van der Auweraer (Molecular Imaging and Photonics, KU Leuven) for providing access to the fluorescence spectroscopy instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurij A. Antonov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, Y.A., Zhuravleva, I.L., Celus, M. et al. Effect of overall charge and local charge density of pectin on the structure and thermal stability of lysozyme. J Therm Anal Calorim 147, 6271–6286 (2022). https://doi.org/10.1007/s10973-021-10954-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10954-5

Keywords

Navigation