Skip to main content
Log in

Experimental study of the effect of spiral-star fins and nano-oil-refrigerant mixture on refrigeration cycle characteristics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Compression refrigeration cycle is widely used in air conditioning and cooling industries. Energy saving and improving refrigeration cycle performance are very important. Improving the thermal properties of the refrigerant and changing the structure of the evaporator are some of the ways to increase the cooling capacity and performance of the refrigeration cycle. In the present study the impact of utilizing aluminum spiral-star fins in the evaporator and R134a-nanooil on the performance of a vapor compression refrigeration cycle is experimentally investigated. Evaporator is a shell-tube heat exchanger in which water flows in the shell side and refrigerant flows in the tube side. SiO2–TiO2 nanoparticles were chosen and synthesized by sol–gel procedure that was assisted with sono-chemical irradiation. Scanning electron microscopy (SEM) depicts morphology and size of the nanostructures, also X-ray diffraction pattern (XRD) analyzes phase of the nanoparticles. Refrigerant mass flow rate is in the range of 0.9–2.1 kg min−1, while different concentrations are considered for SiO2–TiO2-oil including 0.05, 0.1, 0.2 and 0.3 percent. The results revealed that addition of nano-oil can improve heat transfer coefficient by 56% and coefficient of performance (COP) of cycle by 8% maximally. Furthermore, installing aluminum fins in the evaporator tubes can enhance heat transfer coefficient by 80% and COP of cycle by 16.4% maximally and using nano-oil/fins can increase heat transfer coefficient and COP by 155% and 25%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

η :

Efficiency

\(h_{{{\text{fg}}}}\) :

Latent enthalpy of vaporization (J g1)

\(D_{{\text{i}}}\) :

Inner diameter of pipe (m)

Δx :

Vapor quality change

A :

Area (m2)

COP:

Coefficient of performance

G :

Mass velocity (kg m2 s1)

h :

Enthalpy (J g1)

h :

Convection heat transfer coefficient (W m2 K1)

k :

Conductivity (W m1 K1)

L :

Evaporator test length (m)

m :

Mass (kg)

Q :

Heat transfer rate (W)

q :

Radial heat flux (W m2)

R :

Refrigerant

s :

Entropy (J kg1 K1)

t :

Temperature (°C)

u :

Velocity (m s1)

U :

Overall heat transfer coefficient (W m2 K1)

V :

Vapor

W :

Element power (W)

x :

Vapor quality

ρ :

Density (kg m3)

\(\psi\) :

Specific exergy (J g1)

\(\omega\) :

Mass fraction

comp:

Compressor

eva:

Evaporator

in:

Inlet

is:

Isentropic

L :

Liquid

loc:

Local concentration

no:

Nominal concentration

out:

Outlet

s:

Surface

sat:

Saturation

w:

Wall

References

  1. Azmi W, Sharif M, Yusof T, Mamat R, Redhwan A. Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system: a review. Renew Sustain Energy Rev. 2017;69:415–28.

    Article  CAS  Google Scholar 

  2. Shin JY, Kim MS, Ro ST. Experimental study on forced convective boiling heat transfer of pure refrigerants and refrigerant mixtures in a horizontal tube. Int J Refrig. 1997;20(4):267–75.

    Article  CAS  Google Scholar 

  3. Padilla M, Revellin R, Bonjour J. Two-phase flow visualization and pressure drop measurements of HFO-1234yf and R-134a refrigerants in horizontal return bends. Exp Therm Fluid Sci. 2012;39:98–111.

    Article  CAS  Google Scholar 

  4. Padilla M, Revellin R, Wallet J, Bonjour J. Flow regime visualization and pressure drops of HFO-1234yf, R-134a and R-410A during downward two-phase flow in vertical return bends. Int J Heat Fluid Flow. 2013;40:116–34.

    Article  CAS  Google Scholar 

  5. Maheshwary P, Handa C, Nemade K. Effect of shape on thermophysical and heat transfer properties of ZnO/R-134a nanorefrigerant. Mater Today Proc. 2018;5(1):1635–9.

    Article  CAS  Google Scholar 

  6. Zawawi N, Azmi W, Redhwan A, Sharif M, Samykano M. Experimental investigation on thermo-physical properties of metal oxide composite nanolubricants. Int J Refrig. 2018;89:11–21.

    Article  CAS  Google Scholar 

  7. Akilu S, Baheta AT, Sharma K. Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2–CuO/C inclusions. J Mol Liq. 2017;246:396–405.

    Article  CAS  Google Scholar 

  8. Sheikholeslami M, Darzi M, Sadoughi M. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int J Heat Mass Transf. 2018;122:643–50.

    Article  CAS  Google Scholar 

  9. Darzi M, Sadoughi M, Sheikholeslami M. Condensation of nano-refrigerant inside a horizontal tube. Physica B. 2018;537:33–9.

    Article  CAS  Google Scholar 

  10. Allymehr E, Pardiñas ÁÁ, Eikevik TM, Hafner A. Comparative analysis of evaporation of isobutane (R600a) and propylene (R1270) in compact smooth and microfinned tubes. Appl Therm Eng. 2021;188:116606.

    Article  CAS  Google Scholar 

  11. Wen M-Y, Jang K-J, Ho C-Y. The characteristics of boiling heat transfer and pressure drop of R-600a in a circular tube with porous inserts. Appl Therm Eng. 2014;64(1–2):348–57.

    Article  CAS  Google Scholar 

  12. Moghaddam HA, Sarmadian A, Shafaee M, Enayatollahi H. Flow pattern maps, pressure drop and performance assessment of horizontal tubes with coiled wire inserts during condensation of R-600a. Int J Heat Mass Transf. 2020;148:119062.

    Article  CAS  Google Scholar 

  13. Sharafeldeen M, Berbish N, Moawed M, Ali R. Experimental investigation of heat transfer and pressure drop of turbulent flow inside tube with inserted helical coils. Heat Mass Transf. 2017;53(4):1265–76.

    Article  CAS  Google Scholar 

  14. Ghorbani B, Akhavan-Behabadi M, Ebrahimi S, Vijayaraghavan K. Experimental investigation of condensation heat transfer of R600a/POE/CuO nano-refrigerant in flattened tubes. Int Commun Heat Mass Transf. 2017;88:236–44.

    Article  CAS  Google Scholar 

  15. Bi S, Shi L, Zhang L. Application of nanoparticles in domestic refrigerators. Appl Therm Eng. 2008;28(14–15):1834–43.

    Article  CAS  Google Scholar 

  16. Bi S, Guo K, Liu Z, Wu J. Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. Energy Convers Manag. 2011;52(1):733–7.

    Article  CAS  Google Scholar 

  17. Subramani N, Prakash MJ. Experimental studies on a vapour compression system using nanorefrigerants. Int J Eng Sci Technol. 2011;3(9):95–102.

    Article  Google Scholar 

  18. Javadi F, Saidur R. Energetic, economic and environmental impacts of using nanorefrigerant in domestic refrigerators in Malaysia. Energy Convers Manag. 2013;73:335–9.

    Article  CAS  Google Scholar 

  19. Balaji N, Kumar PSM, Velraj R, Kulasekharan N. Experimental investigations on the improvement of an air conditioning system with a nanofluid-based intercooler. Arab J Sci Eng. 2015;40(6):1681–93.

    Article  CAS  Google Scholar 

  20. Bhattacharyya S, Das P, Haldar A, Rakshit A, editors. Performance Analysis of a Geothermal Air Conditioner Using Nanofluid. In: International conference on nano for energy and water. Springer; 2017.

  21. Nabil M, Azmi W, Hamid K, Zawawi N, Priyandoko G, Mamat R. Thermo-physical properties of hybrid nanofluids and hybrid nanolubricants: a comprehensive review on performance. Int Commun Heat Mass Transf. 2017;83:30–9.

    Article  CAS  Google Scholar 

  22. Lee K, Hwang Y, Cheong S, Kwon L, Kim S, Lee J. Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil. Curr Appl Phys. 2009;9(2):e128–31.

    Article  Google Scholar 

  23. Kumar R, Singh J. Effect of ZnO nanoparticles in R290/R600a (50/50) based vapour compression refrigeration system added via lubricant oil on compressor suction and discharge characteristics. Heat Mass Transf. 2017;53(5):1579–87.

    Article  CAS  Google Scholar 

  24. Selimefendigil F. Experimental investigation of nano compressor oil effect on the cooling performance of a vapor-compression refrigeration system. J Therm Eng. 2019;5(1):100–4.

    Article  Google Scholar 

  25. Mahdi QS, Theeb MA, Saed H. Enhancement on the performance of refrigeration system using the nano-refrigerant. J Energy Power Eng. 2017;11:237–43.

    CAS  Google Scholar 

  26. Yilmaz AC. Performance evaluation of a refrigeration system using nanolubricant. Appl Nanosci. 2020;10(5):1–12.

    Article  Google Scholar 

  27. Asadi A, Pourfattah F. Heat transfer performance of two oil-based nanofluids containing ZnO and MgO nanoparticles; a comparative experimental investigation. Powder Technol. 2019;343:296–308.

    Article  CAS  Google Scholar 

  28. Alarifi IM, Alkouh AB, Ali V, Nguyen HM, Asadi A. On the rheological properties of MWCNT-TiO2/oil hybrid nanofluid: an experimental investigation on the effects of shear rate, temperature, and solid concentration of nanoparticles. Powder Technol. 2019;355:157–62.

    Article  CAS  Google Scholar 

  29. Simpson S, Schelfhout A, Golden C, Vafaei S. Nanofluid thermal conductivity and effective parameters. Appl Sci. 2019;9(1):87.

    Article  CAS  Google Scholar 

  30. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1(1):3–17.

    Article  Google Scholar 

  31. Cengel YA, Boles MA. Thermodynamics: an engineering approach. 6th ed. New York: The McGraw-Hill Companies Inc.; 2007.

    Google Scholar 

  32. Bergman TL, Incropera FP, DeWitt DP, Lavine AS. Fundamentals of heat and mass transfer. London: Wiley; 2011.

    Google Scholar 

  33. Shah MM. An improved and extended general correlation for heat transfer during condensation in plain tubes. Hvac&R Res. 2009;15(5):889–913.

    Article  Google Scholar 

  34. Thome JR. Comprehensive thermodynamic approach to modeling refrigerant-lubricating oil mixtures. HVAC&R Res. 1995;1(2):110–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Davoodabadi Farahani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahani, S.D., Farahani, M. & Ghanbari, D. Experimental study of the effect of spiral-star fins and nano-oil-refrigerant mixture on refrigeration cycle characteristics. J Therm Anal Calorim 147, 6469–6480 (2022). https://doi.org/10.1007/s10973-021-10921-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10921-0

Keywords

Navigation