Skip to main content
Log in

Effect of structural variation on the thermal degradation of nanoporous aluminum fumarate metal organic framework (MOF)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Scalable synthesis of aluminum fumarate (Al_FA) metal organic framework (MOF) in aqueous medium and the effect of drying on the crystallinity, apparent activation energy and thermal lifetime are presented. The oven dried (Al_FA_A) at 100 °C (760 mmHg) for 3 h is characterized by Fourier transform infrared spectrophotometer, differential scanning calorimeter, thermogravimetric analyzer, X-ray diffractometer, particle size analyzer, scanning electron microscope (SEM-EDAX) and Brunauer–Emmett–Teller (BET) analysis. The BET surface area, micropore volume (Vpore) and mean pore diameter of Al_FA_A are 937 m2 g−1, 0.38 cm3 g−1 and 1.6 nm, respectively. The Al_FA_A MOF is thermally stable up to 400 °C when compared to aluminum fumarate dried in vacuum oven at 100 °C (25 mmHg) for 3 h (Al_FA_C) which is stable only up to 350 °C. The thermal degradation kinetics for Al_FA_A and Al_FA_C are reported for the first time using model-free approach. For the reaction extent α = 0.2–0.4, a progressive increase in the apparent activation energy for thermal degradation (Ea–D) for Al_FA_A is noted and found to be 205–220 kJ mol−1 and is constant after α = 0.4. The material Al_FA_C shows Ea–D from 160 to 173 kJ mol−1 for α values from 0.2 to 0.7. The difference in the Ea–D values between these materials is attributed to the structural changes and change in the crystalline nature of MOFs. During thermal degradation of Al_FA MOFs, gases like CO, CO2, H2O, CH2=CH2 and CH≡CH are evolved.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Christoph Kiener UM, Schubert M. Metal Organic Frameworks based on aluminium fumarate, the preparation thereof, shaped bodies comprising such frameworks and uses therefor. 2013.

  2. Liu Y-Y, Leus K, Grzywa M, Weinberger D, Strubbe K, Vrielinck H, et al. Synthesis, structural characterization, and catalytic performance of a vanadium-based Metal-Organic Framework (COMOC-3). Eur J Inorg Chem. 2012;16:2819–27. https://doi.org/10.1002/ejic.201101099.

    Article  CAS  Google Scholar 

  3. Kaskel S. The chemistry of metal–organic frameworks, synthesis, characterization and applications. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2016.

    Book  Google Scholar 

  4. Rowsell JLC, Yaghi OM. Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 2004;73(1–2):3–14. https://doi.org/10.1016/j.micromeso.2004.03.034.

    Article  CAS  Google Scholar 

  5. Martin-Dominguez V, Estevez J, Ojembarrena F, Santos V, Ladero M. Fumaric acid production: a biorefinery perspective. Fermentation. 2018;4(2):33. https://doi.org/10.3390/fermentation4020033.

    Article  CAS  Google Scholar 

  6. Jiang HL, Feng D, Liu TF, Li JR, Zhou HC. Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks. J Am Chem Soc. 2012;134(36):14690–3. https://doi.org/10.1021/ja3063919.

    Article  CAS  PubMed  Google Scholar 

  7. Li H, Wang K, Sun Y, Lollar CT, Li J, Zhou H-C. Recent advances in gas storage and separation using metal–organic frameworks. Mater Today. 2018;21(2):108–21. https://doi.org/10.1016/j.mattod.2017.07.006.

    Article  CAS  Google Scholar 

  8. Sarawade P, Tan H, Polshettiwar V. Shape- and morphology-controlled sustainable synthesis of Cu Co, and in metal organic frameworks with high CO2 capture capacity. ACS Sustain Chem Eng. 2012;1(1):66–74. https://doi.org/10.1021/sc300036p.

    Article  CAS  Google Scholar 

  9. Makhseed S, Samuel J. Hydrogen adsorption in microporous organic framework polymer. Chem Commun (Camb). 2008;36:4342–4. https://doi.org/10.1039/b805656k.

    Article  CAS  Google Scholar 

  10. Rowsell JL, Yaghi OM. Strategies for hydrogen storage in metal–organic frameworks. Angew Chem Int Ed Engl. 2005;44(30):4670–9. https://doi.org/10.1002/anie.200462786.

    Article  CAS  PubMed  Google Scholar 

  11. Abanades Lazaro I, Abanades Lazaro S, Forgan RS. Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chem Commun (Camb). 2018;54(22):2792–5. https://doi.org/10.1039/c7cc09739e.

    Article  CAS  Google Scholar 

  12. Chowdhury MA. Metal–organic-frameworks for biomedical applications in drug delivery, and as MRI contrast agents. J Biomed Mater Res A. 2017;105(4):1184–94. https://doi.org/10.1002/jbm.a.35995.

    Article  CAS  PubMed  Google Scholar 

  13. Hoskins BF, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4’,4’’,4’’’-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J Am Chem Soc. 2002;112(4):1546–54. https://doi.org/10.1021/ja00160a038.

    Article  Google Scholar 

  14. Henschel A, Gedrich K, Kraehnert R, Kaskel S. Catalytic properties of MIL-101. Chem Commun (Camb). 2008;35:4192–4. https://doi.org/10.1039/b718371b.

    Article  CAS  Google Scholar 

  15. Horcajada P, Surble S, Serre C, Hong DY, Seo YK, Chang JS, et al. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem Commun (Camb). 2007;27:2820–2. https://doi.org/10.1039/b704325b.

    Article  CAS  Google Scholar 

  16. Liu TF, Feng D, Chen YP, Zou L, Bosch M, Yuan S, et al. Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal–organic frameworks with high surface area. J Am Chem Soc. 2015;137(1):413–9. https://doi.org/10.1021/ja5111317.

    Article  CAS  PubMed  Google Scholar 

  17. Herbst A, Khutia A, Janiak C. Bronsted instead of Lewis acidity in functionalized MIL-101Cr MOFs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols. Inorg Chem. 2014;53(14):7319–33. https://doi.org/10.1021/ic5006456.

    Article  CAS  PubMed  Google Scholar 

  18. Jiang J, Gandara F, Zhang YB, Na K, Yaghi OM, Klemperer WG. Superacidity in sulfated metal–organic framework-808. J Am Chem Soc. 2014;136(37):12844–7. https://doi.org/10.1021/ja507119n.

    Article  CAS  PubMed  Google Scholar 

  19. Yuan S, Feng L, Wang K, Pang J, Bosch M, Lollar C, et al. Stable metal–organic frameworks: stable metal-organic frameworks: design, synthesis, and applications (Adv. Mater. 37/2018). Adv Mater. 2018;30:37. https://doi.org/10.1002/adma.201870277.

    Article  CAS  Google Scholar 

  20. Dhakshinamoorthy A, Asiri AM, Garcia H. Metal–Organic Framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production. Angew Chem Int Ed Engl. 2016;55(18):5414–45. https://doi.org/10.1002/anie.201505581.

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Yang Y, He C, Zeng L, Duan C. Mixed-ligand Metal–Organic Framework for two-photon responsive photocatalytic C–N and C–C coupling reactions. ACS Catal. 2018;9(1):422–30. https://doi.org/10.1021/acscatal.8b03537.

    Article  CAS  Google Scholar 

  22. Qin JS, Yuan S, Lollar C, Pang J, Alsalme A, Zhou HC. Stable metal–organic frameworks as a host platform for catalysis and biomimetics. Chem Commun (Camb). 2018;54(34):4231–49. https://doi.org/10.1039/c7cc09173g.

    Article  CAS  Google Scholar 

  23. Lu XF, Liao PQ, Wang JW, Wu JX, Chen XW, He CT, et al. An Alkaline-stable, metal hydroxide mimicking Metal–Organic Framework for efficient electrocatalytic oxygen evolution. J Am Chem Soc. 2016;138(27):8336–9. https://doi.org/10.1021/jacs.6b03125.

    Article  CAS  PubMed  Google Scholar 

  24. Logvinenko V, Sapianik A, Pishchur D, Fedin V. Thermal decomposition of inclusion compounds and metal–organic frameworks on the basis of heterometallic complex [Li2Zn2(bpdc)3]. J Therm Anal Calorim. 2019;138(6):4453–61. https://doi.org/10.1007/s10973-019-08173-0.

    Article  CAS  Google Scholar 

  25. Logvinenko V, Zavakhina M, Bolotov V, Pishchur D, Dybtsev D. Some basic correlations in the thermal (kinetic) stability of inclusion compounds on the basis of microporous metal–organic frameworks. J Therm Anal Calorim. 2017;130(1):335–42. https://doi.org/10.1007/s10973-017-6317-1.

    Article  CAS  Google Scholar 

  26. Logvinenko VA, Sapchenko SA, Fedin VP. Thermal decomposition of inclusion compounds on the base of the metal–organic framework [Zn4(dmf)(ur)2(ndc)4]. J Therm Anal Calorim. 2014;117(2):747–53. https://doi.org/10.1007/s10973-014-3827-y.

    Article  CAS  Google Scholar 

  27. Haque MA, Chaudhary RG, Paliwal LJ. Synthesis, structural, morphological, and thermal decomposition kinetics of Iron(II) coordination polymer of sebacoyl bis (isonicotinoylhydrazone). Inorg Chim Acta. 2017;462:298–307. https://doi.org/10.1016/j.ica.2017.03.042.

    Article  CAS  Google Scholar 

  28. Bagade R, Sonkusare V, Potbhare AK, Gomaji Chaudhary R, Husain R, Juneja HD. Fabrication of microflower-shaped mesoporous Fe(II) chelate polymer for photocatalytic performance under visible light. Mater Today Proc. 2019;15:566–74. https://doi.org/10.1016/j.matpr.2019.04.122.

    Article  CAS  Google Scholar 

  29. Bagade R, Chaudhary RG, Potbhare A, Mondal A, Desimone M, Dadure K, et al. Microspheres/custard-apples copper(II) chelate polymer: characterization, docking, antioxidant antibacterial assay. ChemistrySelect. 2019;4(20):6233–44. https://doi.org/10.1002/slct.201901115.

    Article  CAS  Google Scholar 

  30. Siva Kaylasa Sundari S, Shamim Rishwana S, Dhanalakshmi J, Ramani R, Vijayakumar CT. Nanoporous Metal Organic Frameworks: effect of thermal history on crystallinity and thermal stability. Chapter No. 15, Multidisciplinary Science and Advanced Technologies. Nova Science Publishers. 2021; ISBN: 978-1-5-53618-959-9.

  31. Chughtai AH, Ahmad N, Younus HA, Laypkov A, Verpoort F. Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem Soc Rev. 2015;44(19):6804–49. https://doi.org/10.1039/c4cs00395k.

    Article  CAS  PubMed  Google Scholar 

  32. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. Metal–organic framework materials as catalysts. Chem Soc Rev. 2009;38(5):1450–9. https://doi.org/10.1039/b807080f.

    Article  CAS  PubMed  Google Scholar 

  33. Asgari A, Ghani K, Keshavarz MH, Mousaviazar A, Khajavian R. Ammonium nitrate-MOF-199: a new approach for phase stabilization of ammonium nitrate. Thermochim Acta. 2018;667:148–52. https://doi.org/10.1016/j.tca.2018.07.018.

    Article  CAS  Google Scholar 

  34. Domán A, Madarász J, László K. In situ evolved gas analysis assisted thermogravimetric (TG-FTIR and TG/DTA–MS) studies on non-activated copper benzene-1,3,5-tricarboxylate. Thermochim Acta. 2017;647:62–9. https://doi.org/10.1016/j.tca.2016.11.013.

    Article  CAS  Google Scholar 

  35. Kleist W, Maciejewski M, Baiker A. MOF-5 based mixed-linker metal–organic frameworks: synthesis, thermal stability and catalytic application. Thermochim Acta. 2010;499(1–2):71–8. https://doi.org/10.1016/j.tca.2009.11.004.

    Article  CAS  Google Scholar 

  36. Łyszczek R. Synthesis, structure, thermal and luminescent behaviors of lanthanide—pyridine-3,5-dicarboxylate frameworks series. Thermochim Acta. 2010;509(1–2):120–7. https://doi.org/10.1016/j.tca.2010.06.010.

    Article  CAS  Google Scholar 

  37. Jeremias F, Fröhlich D, Janiak C, Henninger SK. Advancement of sorption-based heat transformation by a metal coating of highly-stable, hydrophilic aluminium fumarate MOF. RSC Adv. 2014;4(46):24073–82. https://doi.org/10.1039/c4ra03794d.

    Article  CAS  Google Scholar 

  38. Karmakar S, Dechnik J, Janiak C, De S. Aluminium fumarate metal–organic framework: a super adsorbent for fluoride from water. J Hazard Mater. 2016;303:10–20. https://doi.org/10.1016/j.jhazmat.2015.10.030.

    Article  CAS  PubMed  Google Scholar 

  39. Chaudhary RG, Juneja HD, Gharpure MP. Thermal degradation behaviour of some metal chelate polymer compounds with bis(bidentate) ligand by TG/DTG/DTA. J Therm Anal Calorim. 2012;112(2):637–47. https://doi.org/10.1007/s10973-012-2616-8.

    Article  CAS  Google Scholar 

  40. Mani MR, Chellaswamy R, Marathe YN, Pillai VK. Enhanced nucleation of polypropylene by metal–organic frameworks (MOFs) based on aluminium dicarboxylates: influence of structural features. RSC Adv. 2016;6(3):1907–12. https://doi.org/10.1039/c5ra22764j.

    Article  CAS  Google Scholar 

  41. Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chemistry. 2004;10(6):1373–82. https://doi.org/10.1002/chem.200305413.

    Article  CAS  PubMed  Google Scholar 

  42. Sánchez-Sánchez M, Getachew N, Díaz K, Díaz-García M, Chebude Y, Díaz I. Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chem. 2015;17(3):1500–9. https://doi.org/10.1039/c4gc01861c.

    Article  Google Scholar 

  43. Alvarez E, Guillou N, Martineau C, Bueken B, Van de Voorde B, Le Guillouzer C, et al. The structure of the aluminum fumarate metal–organic framework A520. Angew Chem Int Ed Engl. 2015;54(12):3664–8. https://doi.org/10.1002/anie.201410459.

    Article  CAS  PubMed  Google Scholar 

  44. Teo HWB, Chakraborty A, Kayal S. Formic acid modulated (fam) aluminium fumarate MOF for improved isotherms and kinetics with water adsorption: cooling/heat pump applications. Microporous Mesoporous Mater. 2018;272:109–16. https://doi.org/10.1016/j.micromeso.2018.06.016.

    Article  CAS  Google Scholar 

  45. Sonkusare VN, Chaudhary RG, Bhusari GS, Mondal A, Potbhare AK, Mishra RK, et al. Mesoporous octahedron-shaped tricobalt tetroxide nanoparticles for photocatalytic degradation of toxic dyes. ACS Omega. 2020;5(14):7823–35. https://doi.org/10.1021/acsomega.9b03998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kayal S, Chakraborty A, Teo HWB. Green synthesis and characterization of aluminium fumarate metal–organic framework for heat transformation applications. Mater Lett. 2018;221:165–7. https://doi.org/10.1016/j.matlet.2018.03.099.

    Article  CAS  Google Scholar 

  47. Tan B, Luo Y, Liang X, Wang S, Gao X, Zhang Z, et al. In situ synthesis and performance of aluminum fumarate Metal–Organic Framework monolithic adsorbent for water adsorption. Ind Eng Chem Res. 2019;58(34):15712–20. https://doi.org/10.1021/acs.iecr.9b03172.

    Article  CAS  Google Scholar 

  48. Chaudhary RG, Ali P, Gandhare NV, Tanna JA, Juneja HD. Thermal decomposition kinetics of some transition metal coordination polymers of fumaroyl bis (paramethoxyphenylcarbamide) using DTG/DTA techniques. Arab J Chem. 2019;12(7):1070–82. https://doi.org/10.1016/j.arabjc.2016.03.008.

    Article  CAS  Google Scholar 

  49. Chaudhary RG, Juneja HD, Gandhare NV. Evaluation of kinetic parameters from TG/DTG data of chelate polymer compounds of isophthaoylbis(paramethoxyphenylcarbamide). J Chin Adv Mater Soc. 2013;1(4):305–16. https://doi.org/10.1080/22243682.2013.871210.

    Article  CAS  Google Scholar 

  50. Vyazovkin S, Wight CA. Estimating realistic confidence intervals for the activation energy determined from thermoanalytical measurements. Anal Chem. 2000;72(14):3171–5. https://doi.org/10.1021/ac000210u.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the Management and Principal of Kamaraj College of Engineering and Technology (Autonomous), S.P.G.C. Nagar, K. Vellakulam-625701, Madurai, India for providing all of the facilities to do the work. One of the authors (SKS) thanks DEBEL-DRDO for the financial assistance in the form of Research Fellowship under CARS project. SKS would like to thank Prof. C. Sanjeeviraja and Arunjunai Mahendran for providing guidance in XRD analysis and TG-FTIR studies.

Funding

The fund was received from Defence Bio-Engineering and Electromedical Laboratory, ADE Campus, C.V. Raman Nagar, Bengaluru-560093, Karnataka, India.

Author information

Authors and Affiliations

Authors

Contributions

SKS contributed to methodology, writing—original draft preparation. Dr. SSR was involved in validation. Dr. TMK contributed to funding acquisition. Dr. RR was involved in validation and funding acquisition. Dr. RI was involved in funding acquisition. Dr. CTV contributed to supervision, writing—review and editing.

Corresponding author

Correspondence to C. T. Vijayakumar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundari, S.S.K., Rishwana, S.S., Kotresh, T.M. et al. Effect of structural variation on the thermal degradation of nanoporous aluminum fumarate metal organic framework (MOF). J Therm Anal Calorim 147, 5067–5085 (2022). https://doi.org/10.1007/s10973-021-10899-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10899-9

Keywords

Navigation