Skip to main content
Log in

Exergy efficiency of a novel heat exchanger under MHD effects filled with water-based Cu–SiO2-MWCNT ternary hybrid nanofluid based on empirical data

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The need to improve the heat transfer rate in various industries due to its increasing growth, the need to use new turbulators, and the simultaneous use of hybrid nanofluids with them as new methods are inevitable. In this paper, studies are done to analyze the exergy efficiency of ternary hybrid nanofluid flow in a heat exchanger with novel compound twisted turbulator and helical blades. System is under magnetic field from top to bottom in four different values which are related with four different Hartmann numbers (Ha = 50, 100, 200 and 400). The optimization is carried out due to fulfilling the highest exergy efficiency value. According to numerical results, in all the studied Reynolds numbers, the exergy efficiency values of systems with turbulator are more than the basic system. The combined system has well increased the exergy efficiency in the whole range of studied Reynolds numbers and can be introduced as the optimal geometry in the present work. The combination with counterclockwise direction of blades and clockwise direction of twisted tape is more efficient than the system with clockwise blades and twisted tape. Adding helical blades and increasing their number leads to increased exergy efficiency. The highest exergy efficiency according to the PEC index is related to the twisted rotating bar with hemispherical surface barriers, which increases by 7% in Re = 12,000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Sadripour S. 3D numerical analysis of atmospheric-aerosol/carbon-black nanofluid flow within a solar air heater located in Shiraz. Iran Int J Numer Methods Heat Fluid Flow. 2019;29:1378–402. https://doi.org/10.1108/HFF-04-2018-0169.

    Article  Google Scholar 

  2. Shafee A, Jafaryar M, Abohamzeh E, Dang Nam N, Tlili I. Simulation of thermal behavior of hybrid nanomaterial in a tube improved with turbulator. J Therm Anal Calorim. 2021;143:693–703. https://doi.org/10.1007/s10973-019-09247-9.

    Article  CAS  Google Scholar 

  3. Karouei SHH, Ajarostaghi SSM, Gorji Bandpy M, Fard SRH. Laminar heat transfer and fluid flow of two various hybrid nanofluids in a helical double-pipe heat exchanger equipped with an innovative curved conical turbulator. J Therm Anal Calorim. 2020;143:1455–66. https://doi.org/10.1007/s10973-020-09425-0.

    Article  CAS  Google Scholar 

  4. Shafee A, Arabkoohsar A, Sheikholeslami M, Jafaryar M, Ayani M, Nguyen Thoi T, Basha DB, Tlili I, Li Z. Numerical simulation for turbulent flow in a tube with combined swirl flow device considering nanofluid exergy loss. Phys A. 2020;542:122161.

    Article  CAS  Google Scholar 

  5. Manh TD, Jafaryar M, Hamad SM, Barzinjy AA, Shafee A, Abohamzeh E, Tlili I. Nanoparticles hydrothermal simulation in a pipe with insertion of compound turbulator analyzing entropy generation. Phys A. 2020;542:123038.

    Article  CAS  Google Scholar 

  6. Noorbakhsh M, Zaboli M, Mousavi Ajarostaghi SS. Numerical evaluation of the effect of using twisted tapes as turbulator with various geometries in both sides of a double-pipe heat exchanger. J Therm Anal Calorim. 2020;140:1341–53.

    Article  CAS  Google Scholar 

  7. Nguyen TK, Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Mouli KVVC, Tlili I. Design of heat exchanger with combined turbulator. J Therm Anal Calorim. 2020;139:649–59.

    Article  CAS  Google Scholar 

  8. Farshad SA, Sheikholeslami M. Numerical examination for entropy generation of turbulent nanomaterial flow using complex turbulator in a solar collector. Phys A. 2020;550:123951.

    Article  Google Scholar 

  9. Bhattacharyya S, Bashir AI, Dey K, Sarkar R. Effect of novel short-length wavy-tape turbulators on fluid flow and heat transfer: experimental study. Exp Heat Transf. 2020;33:335–54.

    Article  Google Scholar 

  10. Akyürek EF, Geliş K, Şahin B, Manay E. Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger. Results Phys. 2018;9:376–89.

    Article  Google Scholar 

  11. Soltani O, Akbari M. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: experimental study. Physica E Low Dimens Syst Nanostruct. 2016;84:564–70.

    Article  CAS  Google Scholar 

  12. Abbasian Arani AA, Sadripour S, Kermani S. Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluids in a sinusoidal-wavy mini-channel with phase shift and variable wavelength. Int J Mech Sci. 2017;128–129:550–63.

    Article  Google Scholar 

  13. Afrand M, Nazari Najafabadi K, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;102:45–54.

    Article  CAS  Google Scholar 

  14. Boroomandpour A, Toghraie D, Hashemian M. A comprehensive experimental investigation of thermal conductivity of a ternary hybrid nanofluid containing MWCNTs- titania-zinc oxide/water-ethylene glycol (80:20) as well as binary and mono nanofluids. Synth Met. 2020;268:116501.

    Article  CAS  Google Scholar 

  15. Cakmak NK, Said Z, Sundar LS, Ali ZM, Tiwari AK. Preparation, characterization, stability, and thermal conductivity of rGO-Fe3O4–TiO2 hybrid nanofluid: an experimental study. Powder Technol. 2020;372:235–45.

    Article  CAS  Google Scholar 

  16. Huminic G, Huminic A, Dumitrache F, Fleacă C, Morjan I. Study of the thermal conductivity of hybrid nanofluids: recent research and experimental study. Powder Technol. 2020;367:347–57.

    Article  CAS  Google Scholar 

  17. Ahmad S, Ashraf M, Ali K. Simulation of thermal radiation in a micropolar fluid flow through a porous medium between channel walls. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09542-w.

    Article  Google Scholar 

  18. Ahmad S, Ashraf M, Ali K. Nanofluid flow comprising gyrotactic microorganisms through a porous medium. J Appl Fluid Mech. 2020;13:1539–49.

    Google Scholar 

  19. Ahmad S, Ashraf M, Ali K. Numerical simulation of viscous dissipation in a micropolar fluid flow through a porous medium. J Appl Mech Tech Phys. 2020;60:996–1004. https://doi.org/10.1134/S0021894419060038.

    Article  Google Scholar 

  20. Ahmad S, Ashraf M, Ali K. Heat and mass transfer flow of gyrotactic microorganisms and nanoparticles through a porous medium. Int J of Heat Tech. 2020;38:395–402.

    Article  Google Scholar 

  21. Ahmad S, Ashraf M, Ali K. Bioconvection due to gyrotactic microbes in a nanofluid flow through a porous medium. Heliyon. 2020. https://doi.org/10.1016/j.heliyon.2020.e05832.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Abro KA, Memon IQ, Siyal A. Thermal transmittance and thermo-magnetization of unsteady free convection viscous fluid through non-singular differentiations. Phys Scr. 2020. https://doi.org/10.1088/1402-4896/abc981.

    Article  Google Scholar 

  23. Abro KA, Siyal A, Souayeh B, Atangana A. Application of statistical method on thermal resistance and conductance during magnetization of fractionalized free convection flow. Int J Heat Mass Transf. 2020;119:104971.

    Article  Google Scholar 

  24. Awan AU, Riaz S, Sattar S, Abro KA. Fractional modeling and synchronization of ferrofluid on free convection flow with magnetolysis. Eur Phys J Plus. 2020;135:841. https://doi.org/10.1140/epjp/s13360-020-00852-4.

    Article  CAS  Google Scholar 

  25. Abro KA. Role of fractal–fractional derivative on ferromagnetic fluid via fractal Laplace transform: a first problem via fractal–fractional differential operator. Eur J Mech B Fluids. 2021;85:76–81. https://doi.org/10.1016/j.euromechflu.2020.09.002.

    Article  Google Scholar 

  26. Lohana B, Abro KA, Shaikh AW. Thermodynamical analysis of heat transfer of gravity-driven fluid flow via fractional treatment: an analytical study. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09429-w.

    Article  Google Scholar 

  27. Abro KA, Atangana AA. comparative study of convective fluid motion in rotating cavity via Atangana-Baleanu and Caputo-Fabrizio fractal–fractional differentiations. Eur Phys J Plus. 2020;135:226. https://doi.org/10.1140/epjp/s13360-020-00136-x.

    Article  CAS  Google Scholar 

  28. Abro KA, Siyal A, Atangana A. Thermal stratification of rotational second-grade fluid through fractional differential operators. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09312-8.

    Article  Google Scholar 

  29. Abro KA. A fractional and analytic investigation of thermo-diffusion process on free convection flow: an application to surface modification technology. Eur Phys J Plus. 2020;135:31. https://doi.org/10.1140/epjp/s13360-019-00046-7.

    Article  CAS  Google Scholar 

  30. Abro KA. Fractional characterization of fluid and synergistic effects of free convective flow in circular pipe through Hankel transform. Phys Fluids. 2020;32:123102. https://doi.org/10.1063/5.0029386.

    Article  CAS  Google Scholar 

  31. Abro KA, Soomro M, Atangana A, Gómez-Aguilar JF. Thermophysical properties of Maxwell nanofluids via fractional derivatives with regular kernel. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-10287-9.

    Article  Google Scholar 

  32. Barnoon P, Toghraie D, Eslami F, Mehmandoust B. Entropy generation analysis of different nanofluid flows in the space between two concentric horizontal pipes in the presence of magnetic field: Single-phase and two-phase approaches. Comput Math Appl. 2019;77:662–92.

    Article  Google Scholar 

  33. Bennia A, Bouaziz MN. CFD modeling of turbulent forced convective heat transfer and friction factor in a tube for Fe3O4 magnetic nanofluid in the presence of a magnetic field. J Taiwan Inst Chem Eng. 2017;78:127–36.

    Article  CAS  Google Scholar 

  34. Aminfar H, Mohammadpourfard M, Mohseni F. Two-phase mixture model simulation of the hydro-thermal behavior of an electrical conductive ferrofluid in the presence of magnetic fields. J Magn Magn Mater. 2012;324:830–42.

    Article  CAS  Google Scholar 

  35. Manninen M, Taivassalo V, Kallio S. On the mixture model for multiphase flow. Finland: Technical Research Centre of Finland; 1996.

    Google Scholar 

  36. Schiller L, Naumann A. A drag coefficient correlation. Vdi Zeitung. 1935;77:51.

    Google Scholar 

  37. Karimipour A, Taghipour A, Malvandi A. Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux. J Magn Magn Mater. 2016;419:420–8.

    Article  CAS  Google Scholar 

  38. Barnoon P, Toghraie D. Numerical investigation of laminar flow and heat transfer of non-Newtonian nanofluid within a porous medium. Powder Technol. 2018;325:78–91.

    Article  CAS  Google Scholar 

  39. Sadripour S. Investigation of flow characteristics and heat transfer enhancement of a corrugated duct using nanofluid. J Appl Mech Tech Phys. 2018;59:1049–57.

    Article  CAS  Google Scholar 

  40. Jafarzad A, Mahdi HM. Thermal and exergy analysis of air-nanofluid bubbly flow in a double-pipe heat exchanger. Powder Technol. 2020;372:563–77.

    Article  CAS  Google Scholar 

  41. Sheikhzadeh GA, Monfaredi F, Aghaei A, Sadripour S, Adibi M. Numerical analysis of thermal-hydraulic properties of turbulent aerosol-carbon black nanofluid flow in corrugated solar collectors with double application. Trans Pheno Nano Micro Scal. 2019;7:37–52.

    Google Scholar 

  42. Eiamsa-ard S, Kiatkittipong K. Heat transfer enhancement by multiple twisted tape inserts and TiO2/water nanofluid. Appl Therm Eng. 2014;70:896–924.

    Article  CAS  Google Scholar 

  43. Aghaei A, Khorasanizadeh H, Sheikhzadeh G, Abbaszadeh M. Numerical study of magnetic field on mixed convection and entropy generation of nanofluid in a trapezoidal enclosure. J Magn Magn Mater. 2016;403:133–45.

    Article  CAS  Google Scholar 

  44. Bhattacharyya S, Chattopadhyay H, Haldar A. Design of twisted tape turbulator at different entrance angle for heat transfer enhancement in a solar heater. Beni Suef Univ J Basic Appl Sci. 2018;7:118–26.

    Google Scholar 

  45. Jafarimoghaddam A, Aberoumand H, Aberoumand S, Abbasian Arani AA, Habibollahzade A. MHD wedge flow of nanofluids with an analytic solution to an especial case by Lambert W-function and Homotopy perturbation method. Eng Sci Technol Int J. 2017;20:1515–30.

    Google Scholar 

  46. Qi C, Liu M, Tang J. Influence of triangle tube structure with twisted tape on the thermo-hydraulic performance of nanofluids in heat-exchange system based on thermal and exergy efficiency. Energy Convers Manag. 2019;192:243–68.

    Article  CAS  Google Scholar 

  47. Wang G, Qi C, Liu M, Li C, Yan Y, Liang L. Effect of corrugation pitch on thermo-hydraulic performance of nanofluids in corrugated tubes of heat exchanger system based on exergy efficiency. Energy Convers Manag. 2019;186:51–6.

    Article  CAS  Google Scholar 

  48. Fan F, Qi C, Tang J, Liu Q. Thermal and exergy efficiency of magnetohydrodynamic Fe3O4–H2O nanofluids flowing through a built-in twisted turbulator corrugated tube under magnetic field. Asia-Pacific J Chem Eng. 2020. https://doi.org/10.1002/apj.2500.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Aghaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dezfulizadeh, A., Aghaei, A., Hassani Joshaghani, A. et al. Exergy efficiency of a novel heat exchanger under MHD effects filled with water-based Cu–SiO2-MWCNT ternary hybrid nanofluid based on empirical data. J Therm Anal Calorim 147, 4781–4804 (2022). https://doi.org/10.1007/s10973-021-10867-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10867-3

Keywords

Navigation