Skip to main content
Log in

Obtaining and characterization of PBAT/PLA fibers containing zinc phthalocyanine prepared by the electrospinning method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, blends based on poly(butylene adipate-co-terephthalate) (PBAT) and poly(lactic acid) with the incorporation of zinc phthalocyanine (ZnPc) (in concentrations of 6.35 × 10–4 and 1.46 × 10–2 mol L−1) were fabricated using the electrospinning method. The ZnPC is known for its use as a photosensitizer in photodynamic therapy (PDT) with photophysical properties already well reported in the literature. The importance of this study is justified by the applicability of the material in the medical and disinfection field if the formation of reactive species is proven, a predominant factor in PDT. The prepared fibers were characterized by optical and scanning microscopy, differential scanning calorimetry, fluorescence, UV–Vis diffuse reflectance spectroscopy, Fourier transform-Raman spectroscopy, photoacoustic and photosensitivity test. The microscopies indicated a reduction in mean fiber diameter, with an increase in the zinc phthalocyanine concentration. The results indicate that the optical properties of the phthalocyanine remain in the solid carrier and, after intense electric field, there is the formation of reactive species. Also, through the thermal properties of the material, it was possible to notice a greater interaction of phthalocyanine with the PBAT group of the polymeric matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bonnett R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev. 1995;24:19.

    Article  CAS  Google Scholar 

  2. Khopde SM, Indira Priyadarsini K, Palit DK, Mukherjee T. Effect of solvent on the excited-state photophysical properties of curcumin. Photochem Photobiol. 2007;72:625–31. https://doi.org/10.1562/0031-8655%282000%290720625EOSOTE2.0.CO2.

    Article  Google Scholar 

  3. Moser FH, Thomas Standard Ultramarine AL, Co C. Phthalocyanine compounds. J Chem Educ. 1964;5:245–9.

    Article  Google Scholar 

  4. Ogunsipe A, Maree D, Nyokong T. Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. J Mol Struct. 2003;650:131–40.

    Article  CAS  Google Scholar 

  5. Güzel E, Atsay A, Nalbantoglu S, Şaki N, Dogan AL, Gül A, et al. Synthesis, characterization and photodynamic activity of a new amphiphilic zinc phthalocyanine. Dye Pigment. 2013;97:238–43.

    Article  Google Scholar 

  6. Konan YN, Gurny R, Allémann E. State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B Biol. 2002;66:89–106.

    Article  CAS  Google Scholar 

  7. Bechet D, Couleaud P, Frochot C, Viriot M-L, Guillemin F, Barberi-Heyob M. Nanoparticles as vehicles for delivery of photodynamic therapy agents. Trends Biotechnol. 2008;26:612–21.

    Article  CAS  Google Scholar 

  8. Rossin ARS, Oliveira EL, Moraes FAP, Junior RC, Scheidt DT, Caetano W, et al. Terapia Fotodinâmica em Eletrofiação: Revisão de técnicas e aplicações. Quim Nova. 2020;43:613–22.

    Google Scholar 

  9. Arenbergerova M, Arenberger P, Bednar M, Kubat P, Mosinger J. Light-activated nanofibre textiles exert antibacterial effects in the setting of chronic wound healing. Exp Dermatol. 2012;21:619–24.

    Article  CAS  Google Scholar 

  10. Ma F, Yuan CW, Ren XX, You CJ, Cao JH, Wu DY. 5,10,15,20-Tetrakis (4-carboxyphenyl) porphin-conjugated poly(l-lactic) acid/polyethylene oxide nanofiber membranes for photodynamic therapy. J Photochem Photobiol A Chem. 2018;355:267–73. https://doi.org/10.1016/j.jphotochem.2017.08.062.

    Article  CAS  Google Scholar 

  11. Mosinger J, Lang K, Kubát P, Sýkora J, Hof M, Plíštil L, et al. Photofunctional polyurethane nanofabrics doped by zinc tetraphenylporphyrin and zinc phthalocyanine photosensitizers. J Fluoresc. 2009;19:705–13.

    Article  CAS  Google Scholar 

  12. Masilela N, Kleyi P, Tshentu Z, Priniotakis G, Westbroek P, Nyokong T. Photodynamic inactivation of Staphylococcus aureus using low symmetrically substituted phthalocyanines supported on a polystyrene polymer fiber. Dye Pigment. 2013;96:500–8.

    Article  CAS  Google Scholar 

  13. Zugle R, Litwinski C, Torto N, Nyokong T. Photophysical and photochemical behavior of electrospun fibers of a polyurethane polymer chemically linked to lutetium carboxyphenoxy phthalocyanine. New J Chem. 2011;35:1588.

    Article  CAS  Google Scholar 

  14. Mantareva V, Kussovski V, Angelov I, Borisova E, Avramov L, Schnurpfeil G, et al. Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms. Bioorg Med Chem. 2007;15:4829–35.

    Article  CAS  Google Scholar 

  15. Goes AM, Carvalho S, Oréfice RL, Custódio TA, Pimenta JG, Souza MDB, et al. Viabilidade Celular de Nanofibras de Polímeros Biodegradáveis e seus Nanocompósitos com Argila Montmorilonita. Polímeros. 2012;22:34–41.

    Article  CAS  Google Scholar 

  16. Schneider R, Mercante LA, Andre RS, de Brandão HM, Mattoso LHC, Correa DS. Biocompatible electrospun nanofibers containing cloxacillin: Antibacterial activity and effect of pH on the release profile. React Funct Polym. 2018;132:26–35.

    Article  CAS  Google Scholar 

  17. Rosenberger AG, Dragunski DC, Muniz EC, Módenes AN, Alves HJ, Tarley CRT, et al. Electrospinning in the preparation of an electrochemical sensor based on carbon nanotubes. J Mol Liq. 2019;2019:112068.

    Google Scholar 

  18. Costa RGF, de Oliveira JE, de Paula GF, de Picciani PHS, de Medeiros ES, Ribeiro C, et al. Eletrofiação de polímeros em solução: parte II: aplicações e perspectivas. Polímeros. 2012;22:178–85.

    Article  CAS  Google Scholar 

  19. Castellano M, Alloisio M, Darawish R, Dodero A, Vicini S. Electrospun composite mats of alginate with embedded silver nanoparticles: synthesis and characterization. J Therm Anal Calorim. 2019;137:767–78.

    Article  CAS  Google Scholar 

  20. dos Santos Silva ID, Schäfer H, Jaques NG, Siqueira DD, Ries A, de Souza Morais DD, et al. An investigation of PLA/Babassu cold crystallization kinetics. J Therm Anal Calorim. 2019;141:1–9.

    Google Scholar 

  21. Weng Y-X, Jin Y-J, Meng Q-Y, Wang L, Zhang M, Wang Y-Z. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym Test. 2013;32:918–26.

    Article  CAS  Google Scholar 

  22. Fukushima K, Wu M-H, Bocchini S, Rasyida A, Yang M-C. PBAT based nanocomposites for medical and industrial applications. Mater Sci Eng C. 2012;32:1331–51.

    Article  CAS  Google Scholar 

  23. Costa RGF, De OJE, De PGF, De MES, Ribeiro C, Mattoso LHC, et al. Parte I: Fundamentação Teórica. Polímeros. 2012;22:170–7.

    Article  CAS  Google Scholar 

  24. Wang LF, Rhim JW, Hong SI. Preparation of poly(lactide)/poly(butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application. LWT Food Sci Technol. 2016;68:454–61. https://doi.org/10.1016/j.lwt.2015.12.062.

    Article  CAS  Google Scholar 

  25. Tackley DR, Dent G, Ewen SW. Phthalocyanines: structure and vibrations. Phys Chem Chem Phys. 2001;3:1419–26.

    Article  CAS  Google Scholar 

  26. Gaffo L, Cordeiro MR, Freitas AR, Moreira WC, Girotto EM, Zucolotto V. The effects of temperature on the molecular orientation of zinc phthalocyanine films. J Mater Sci. 2010;45:1366–70.

    Article  CAS  Google Scholar 

  27. Tackley DR, Smith WE. Phthalocyanines: structure and vibrations. Phys Chem Chem Phys. 2001;3(8):1419–26.

    Article  CAS  Google Scholar 

  28. Li B, Lin H, Chen D, Wilson BC. Singlet oxygen detection during. J Innov Opt Health Sci. 2013;6:1–9.

    CAS  Google Scholar 

  29. Gerola AP, Semensato J, Pellosi DS, Batistela VR, Rabello BR, Hioka N, et al. Chemical determination of singlet oxygen from photosensitizers illuminated with LED: new calculation methodology considering the influence of photobleaching. J Photochem Photobiol A Chem. 2012;232:14–21.

    Article  CAS  Google Scholar 

  30. Rabello BR, Gerola AP, Pellosi DS, Tessaro AL, Aparício JL, Caetano W, et al. Singlet oxygen dosimetry using uric acid as a chemical probe: Systematic evaluation. J Photochem Photobiol A Chem. 2012;238:53–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge UNIOESTE, UEM, CNPq (National Council for Scientific and Technological Development), CAPES (Coordination for the Improvement of Higher Education Personnel), and Araucaria Foundation for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Cardoso Dragunski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 272 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossin, A.R.S., Caetano, J., Zanella, H.G. et al. Obtaining and characterization of PBAT/PLA fibers containing zinc phthalocyanine prepared by the electrospinning method. J Therm Anal Calorim 147, 4579–4587 (2022). https://doi.org/10.1007/s10973-021-10851-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10851-x

Keywords

Navigation